

Use of Artificial Intelligence for Analysing Structural Health Monitoring Data from Concrete Structures

Harshita Garg

Kai Yang

Duncan Borman

Sreejith Nanukuttan (QUB)

Anthony G Cohn

Muhammed Basheer

Outline of Presentation

- Background
- Role of Artificial Intelligence in SHM
- Research objectives
- Experimental details
- Initial Observations from the data
- Application of AI to SHM data
- Results and discussion
- Conclusions and recommendations for future work

"If you can predict it, you can prevent it"

Structural Health Monitoring

An innovative technology to automatically sense, provide and evaluate timely information about the condition and performance of structures at both global and local levels.

Problem Statement

Issues with the current practice of collecting massive uncertain sensor data sets:

- Difficult to process;
- Not easy to identify defects from noise;
- Wrong judgement could trigger untimely maintenance and/or repair, resulting in an increased cost of maintenance.

Potential solution:

Apply AI-enhanced SHM methodology for data processing and decision making, thereby for better in-service performance assessment of structures.

	A	В	C	D	E	F	G	н	1	1	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
	Date	Time	Time							MS-1														PC-1	L	
		(h:m:s)	min inter	Resistance (ohm Ω)			Temperature indicator		ator	Temperature °C			Resistance at 25°C (ohm n)		ohm Ω)		Resi	Resistance (ohm			Temperature indicator			Tem		
				5mm	15mm	25mm	35mm	45mm	15	25	45	15	25	45	15mm	25mm	45mm	5mm	15mm	25mm	35mm	45mm	15	25	45	15
	13/06/2011	12:20:00	0	19348	15979	19298	12296	14718	8314	8356	8373	14.3	14.2	14.2	10011	12018	9143	12146	12669	9225	8901	8073	8242	8477	8429	1
	13/06/2011	12:30:00	10	19570	16696	20076	12275	14585	8458	8405	8262	14	14.1	14.5	10246	12414	9206	11476	12284	9195	9003	8140	8276	8361	8401	1
	13/06/2011	12:40:00	20	19536	15770	19142	12201	14975	8275	8214	8351	14.4	14.6	14.2	9936	12166	9332	11828	12211	9263	8798	8100	8187	8342	8345	1
	13/06/2011	12:50:00	30	19295	16219	19333	11826	14897	8165	8128	8262	14.7	14.8	14.5	10381	12440	9403	12263	12647	9113	8809	8059	8155	8363	8347	1
	13/06/2011	13:00:00	40	19512	15869	18956	11944	14336	8189	8213	8145	14.7	14.6	14.8	10122	12050	9202	12015	12143	9186	8986	8016	8086	8197	8281	1
	13/06/2011	13:10:00	50	19431	16051	19259	11690	14438	8120	8042	8196	14.8	15	14.6	10340	12546	9200	11816	12288	8812	8817	7880	8027	8251	8153	1
)	13/06/2011	13:20:00	60	20028	16002	18851	11603	14500	8161	8039	8109	14.7	15	14.9	10248	12286	9356	11707	12115	9279	8451	8033	8084	8178	8108	1
1	13/06/2011	13:30:00	70	19410	15813	19089	11742	13971	8134	8044	8109	14.8	15	14.9	10166	12432	9014	12102	12408	9164	8762	7901	8041	8201	8088	
2	13/06/2011	13:40:00	80	19551	15985	18475	11996	14053	8079	8010	8089	14.9	15.1	14.9	10358	12091	9093	11931	12085	9069	8737	7872	8093	8184	8172	1
8	13/06/2011	13:50:00	90	19158	15946	18980	11642	14542	8016	7964	8184	15.1	15.3	14.7	10427	12504	9282	11397	12309	8963	8721	7792	8061	8095	8004	
	13/06/2011	14:00:00	100	19172	15546	18125	11573	14125	7950	7979	7986	15.3	15.2	15.2	10262	11915	9276	11879	11630	8794	8949	7721	7919	8116	8106	
5	13/06/2011	14:10:00	110	19019	15048	18306	11596	14292	7880	7857	7878	15.5	15.5	15.5	10034	12246	9532	11655	11612	8922	8657	7636	7865	8072	8042	
	13/06/2011	14:20:00	120	18582	15059	18258	11299	13798	7822	7720	7828	15.6	15.9	15.6	10125	12457	9269	11391	11812	8877	8306	7630	7765	7958	7948	
	13/06/2011	14:30:00	130	18979	15418	18173	11175	13632	7770	7662	7859	15.8	16.1	15.5	10444	12502	9117	11560	11847	8748	8633	7537	7653	7943	7925	
	13/06/2011	14:40:00	140	19662	15140	17794	11471	13971	7786	7640	7773	15.7	16.1	15.8	10232	12280	9460	11276	11501	8869	8546	7523	7725	7852	7789	
	13/06/2011	14:50:00	150	18753	15333	18637	11/3/	13983	7769	7653	7785	15.8	16.1	15.7	10388	12838	9451	11593	11/92	8905	8266	7633	7693	7889	7810	
	13/06/2011	15:00:00	160	18988	15233	18355	11358	13586	7794	7683	7740	15.7	16	15.9	10283	12589	9243	11789	11673	8600	8449	7525	7671	7822	7783	
	13/06/2011	15:10:00	1/0	18554	14/91	18521	11143	13582	7661	7655	//33	16.1	16.1	15.9	101//	12/54	9249	1113/	11285	8/54	8335	7450	/521	7755	///1	
	13/06/2011	15:20:00	180	18311	15001	16069	10541	131/3	7593	7622	7634	16.5	16.2	16.2	10423	11118	9099	10829	11341	8/68	8634	/58/	7532	7441	7642	
	13/06/2011	15:30:00	190	18052	14151	16142	10751	13136	/389	/343	7502	16.9	1/	16.5	10125	11626	9247	106/1	11849	8266	8040	82/1	/364	7568	/38/	
	13/06/2011	15:40:00	200	18129	14837	18221	11034	129/8	7340	7259	7479	1/	17.5	10.0	10690	13283	9166	11000	11108	8490	8224	7329	7275	7406	7508	
	13/06/2011	15:50:00	210	1/863	14631	1/636	10890	13223	7315	7185	7404	17.1	17.5	15.8	10580	12994	9440	10853	11480	8545	8209	7210	7251	7424	7394	
	13/06/2011	16:00:00	220	1/645	13/84	16909	11012	13006	/16/	7196	7327	17.5	17.4	17.1	10182	12439	9389	10398	10582	8210	/994	/102	/108	7355	73/8	
	13/00/2011	16:10:00	230	10042	136/4	10303	11154	13127	0883	/050	7140	10.4	17.9	17.0	106/5	12293	9/23	10405	11500	8100	8013	7402	0813	7203	7182	
5	13/06/2011	16:20:00	240	13937	13018	15586	10391	13267	6823	6800	7059	18.5	18.7	17.9	10107	12141	9954	10505	11548	7829	801/	7493	6641	6963	7093	_
	13/00/2011	16:50:00	250	16261	13000	1551/	10127	12636	6633	6605	6914	18.5	18.5	18.3	10186	12008	9852	0703	10760	7791	7493	6743	6636	6933	6030	
	13/00/2011	16:40:00	200	10301	12//0	10022	10137	12031	0037	0095	6330	19.2	19	10.0	10165	12277	9/39	9702	10204	7/1/	7400	6600	6620	6800	6929	
	13/06/2011	15:50:00	270	16183	13098	16120	10068	12011	0000	6000	6700	19.5	19.1	10.0	10458	12807	9391	9887	10035	75//	7393	6656	6539	6800	6809	
	12/06/2011	17:00:00	200	16167	12904	15928	30/0	11002	6520	6429	6709	19.5	19.5	10.4	10458	12030	9221	9720	10033	7430	7272	0000	6437	6609	6647	
1	12/06/2011	17:10:00	200	16137	12020	15600	9030	11303	6459	6204	6512	19.5	19.9	19.4	105/3	13042	9290	9908	9902	7412	7203	6533	6261	6000	6552	
	13/06/2011	17:20:00	310	15920	12662	15184	9610	11/00	6346	6308	6430	20.2	20 3	10.0	10347	12708	9303	9300	9649	7301	7043	6420	6257	6416	6493	
	12/06/2011	17:40:00	220	15776	12542	14051	0454	11400	6251	6336	6215	20.2	20.5	20.2	10595	12646	9614	0470	0475	7310	6090	6201	6192	6264	6292	
	12/06/2011	17-50-00	220	15570	12225	14774	0211	11109	61.62	6004	6242	20.5	21.1	20.5	10402	12761	0296	0195	9562	7112	6902	6222	6092	6245	6242	
	13/06/2011	18:00:00	340	15415	11935	14637	9290	10912	6101	6052	6143	20.5	21.1	20.0	10298	12701	9357	9167	9451	7089	6783	6109	6043	6171	6213	
	13/06/2011	18-10-00	340	15451	12130	14352	9197	10902	6125	6018	6061	21.1	21.5	20.5	10437	12539	9464	9197	9450	7085	6765	6087	6085	6178	6142	_
	13/06/2011	18-20-00	360	15362	11935	14717	9049	10783	6105	6052	6019	21.1	21.4	21.4	10292	12792	9418	9572	9527	6996	6718	6147	6069	6187	6136	_
	13/06/2011	18-30-00	370	15751	11960	14578	9056	10700	6096	5992	6050	21.1	21.5	21.4	10252	12784	9303	9347	9475	6994	6783	6088	6101	6200	6148	_
	13/06/2011	18:40:00	380	15731	12062	14704	9018	10703	6052	6024	6050	21.1	21.5	21.3	10485	12832	9370	9295	9445	7024	6791	6140	6082	6216	6172	_
	13/06/2011	18-50-00	390	15404	12003	14326	9016	10780	6011	5966	5992	21.6	21.6	21.5	10524	12612	9452	9363	9480	6914	6764	6045	6011	6166	6109	-
5	13/06/2011	18:50:00	390	15404	12035	14326	9016	10/80	6011	2300	2332	21.4	21.6	21.5	10524	12612	9452	9363	9480	6914	6/64	6045	6011	0100	6109	

Application of Artificial Intelligence in SHM

Al-based algorithms are used to:

- enhance building performance and early detection of the deterioration of structures.
- To identify, locate and quantify defects.
- To assess structural health conditions.
- To capture changes in natural vibration frequencies and mode shape.

Gap –No such system has been used to extract reliable information of material properties from the sensor data and thereby to capture their changes for prognosis/decision making and predict the inservice performance of structures.

Objectives of the research

To apply Artificial Intelligence to SHM data obtained from electrical resistance sensors and thereby to demonstrate the advantage of this method over manual data analysis for assessing the performance of concrete in service.

Experimental Details

- Three high-performance concrete (HPC) mixes with two samples of each mix, including Portland cement (PC), pulverised fuel ash (PFA) and micro-silica (MS).
- Concrete blocks (410 x 100 x 250mm) embedded with temperature and resistivity sensors.
- Blocks were exposed in an open area one metre apart from a 3-storey building in Belfast.

HPC	Binder			w/b	SP				
	proportions	PC	MS	PFA	Water	Fine	Coarse	ratio	
	(% by mass)					aggregate	aggregate		
PC	100:0	485	0	0	145	689	1150	0.3	1.3
	Only PC								
PFA	80:20	388	0	97	145	668	1150	0.3	1.4
	PC: PFA								
MS	73:7:20	352	36	97	145	652	1150	0.3	1.5
	PC: MS: PFA								

Concrete Mix Proportions

Specimens at the exposure environmental conditions

Experimental Details

- HPC blocks embedded with a multielectrode array for:
 - acquiring electrical resistance
 - thermistors for temperature measurements.
 - 3 different depths 15, 25 and 45mm
- Data was recorded every 10 minutes for 6 months.
- Over 24000 sets of data in total.
- **Data wrangling-** Raw data was converted into a useful and suitable format for analysis.
- Data cleaning Missing values, duplication of data, invalid data, and noisy data were identified and removed to reduce their influence.

Sensors embedded in concrete blocks

Monitoring system

Correction of Resistance Data for Temperature

- Huge diurnal variation in resistance for all concrete types.
- "Resistance is a temperature-dependent function" (Nanukuttan, et al., 2017).
- Arrhenius relationship to remove the influence of temperature on electrical resistance.
- The acquired values of activation energy enables resistance measurements to be standardised to 25°C.
- Huge fluctuations in as-measured resistance are slightly reduced in standardised resistance, especially for MS.

As measured resistance vs standardised resistance (KΩ)@25°C for PC, PFA and MS at 15mm depth

Initial Observations from the Standardised Data

- Resistance increased over the period in all three concrete types (Resistance increase with the pozzolanic reaction of the binder material).
- Resistance at deeper concrete is lower than at the surface (surface release more moisture).

Standardised resistance (KΩ) for PC, PFA and MS to a reference temperature of 25°C

Manual Analysis of Data

- The performance of concrete is assessed based on electrical resistance and chloride diffusivity calculated from electrical resistance.
- Important to evaluate resistance values for all concrete types to derive diffusion coefficients for predicting the service life.
- Three parameters of resistance to discuss:
 - Initial rate of increase in resistance,
 - Value of stable resistance,
 - Time taken to reach a stabilised resistance value.

Manual piecewise regression of resistance for MS

Application of AI to SHM Data

- "Gaussian weighted moving average filter" to smooth the data.
- Automated piecewise linear regression to determine change in resistance gradient and stabilised value.

Results and Discussion

Concrete Time taken to Stabilised Diffusion Depth Initial rate of increase in stabilise Mix coefficient (mm) value resistance (%) **(**KΩ) (m²/s) (days) PC 15 051.0 66.1 15.41 4.10 x 10⁻¹¹ 25 091.5 129.0 16.13 5.20 x 10⁻¹¹ 45 051.8 77.0 09.73 7.64 x 10⁻¹¹ **PFA** 15 8.72 x 10⁻¹¹ 065.4 57.1 09.79 25 83.7 096.7 10.73 8.55 x 10⁻¹¹ 45 110.0 93.9 11.68 9.32 x 10⁻¹¹ MS 15 359.9 78.5 55.91 3.33 x 10⁻¹¹ 25 348.8 78.1 58.25 2.20 x 10⁻¹¹ 45 246.2 64.0 40.32 4.91 x 10⁻¹¹

Resistance/diffusion coefficient values using AI-enhanced approach

 Initial rate of increase in resistance

MS > PFA > PC

- Time taken to stabilise
 MS > PFA > PC
- Determined diffusion coefficient using the relationship $\frac{De}{D_0} = \frac{\rho}{\rho_{bulk}}$ which could be used to predict the service life.
- Diffusion coefficient had a trend opposite to that for resistance

Conclusions

- The challenge identified in handling, smoothing and analysing large data set manually demonstrated the need to resort to **Artificial Intelligence** for data analysis.
- The proposed methodology of applying AI to SHM data is faster and more efficient than the conventional approach to calculate the stabilised value of resistance/diffusion coefficient.
- Data highlighted the impact of temperature and depth on resistance measurements for different concrete mixes.
- Both the standardised resistance values and the diffusion coefficient calculated from resistance clearly demonstrated the benefit of using supplementary cementitious materials in improving the durability of concrete.
- The AI-enhanced methodology represents a **reliable, easily interpretable and effective approach** that can be used for different types of concrete in structures for monitoring and the calculation of resistance/ diffusion coefficient and thereby predict the performance of concrete structures.

Recommendations for Future Work

- Use long-term data to assess the effect of exposure environment on durability of concrete using electrical resistance sensors.
- Install RH sensors both inside and outside of concrete and the temperature sensors outside the concrete in addition to inside the concrete so that any influence of the ambient environmental conditions around the concrete surface on measured resistance can be determined.
- The proposed methodology to smooth noisy data and extract reliable information from large amount of resistance data may be repeated for other concrete types and exposure conditions. However, the smoothing window would change depending on the noise and type of analysis.

Thank You. Any Questions?

Harshita Garg <cn18hg@leeds.ac.uk>