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Motivation: Decline in supply of fly ash necessitates studying
and deploying non-traditional pozzolans

Source: ACAA
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One new source is high SO, coal ash (fresh or harvested)
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Currently, ASTM C618 does not allow use of fly ash with

SO;> 5.0%
(&glw Designation: C618 - 22
1u_||

INTERNATIONAL

Standard Specification for
Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use

in Concrete’

TABLE 1 Chemical Requirements

Class
N F C
Silicon dioxide (SiO,) plus aluminum oxide (Al,O5) plus iron oxide (Fe,05), 70.0 50.0 50.0
min, %
Calcium oxide (CaQ), % report only B-0ugax. >18.0
Sulfur trioxide (SO4), max, % 4.0 @ @
Moisture content, max, % 3.0 30 3t
Loss on ignition, max, % 10.0 6.0 6.0

AThe use of Class F pozzolan containing up to 12.0 % loss on ignition may be approved by the user if either acceptable performance records or laboratory test results
are made available.
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Where does SO, in fly ash come from?
What forms of SO, may be present in fly ash?

Pyrite, gypsum, and organic
sulfur in coal

Wet FGD = scrubber sludge
(Cas0,)

Dry FGD = CaSO;or NaSO,
particles

FBC boilers = CaS0O, particles

Sorbent residue may be also
present in fly ash: CaCO,,
Na,CO,, trona

+ Emissions (H,0, CO,, and much reduced SO,, NOx, Pm)
.
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www.uky.edu/KGS/coal/coal-for-combustionbyproducts.php
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We tested 4 real high SO, fly ashes, plus
an in-spec ash doped with various forms of SO, up to 11%wt.

ASTM C618 Spec. fly ash
Property o FBC - CasSoO,

limits (CFA)
SiO,+Al,0;+Fe, 0, _

Min 50.0% 49.2% 48.3% 68.6% 51.0% 88.0%
(Wt%)
CaO (wt%) F<18.0%<C 25.5% (C) 27.2% (C) 14.4% (F) 25.4% (C) |3.4% (F)
SO, (wt%) Max 5.0% 13.3% 11.8% 8.0% 6.1% 0.8%
Na,O,, (wt%) Max 4.0% 1.4% 1.3% 1.7% 6.5% 1.4%
LOI (wt%) Max 6.0% 2.6% 2.3% 3.4% 2.6% 2.3%
Fineness (%) Max 34% 7.5% 9.4% 32.7% 14.8% 23.1%
SAIl 28-day 2 75% 97% 99% 91% 75% 79%
Water req. (%) Max 105% 100% 98% 107.4% 100% 100%
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QXRD of the four high SO, fly ashes
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QXRD of the four high SO, fly ashes
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Next, we evaluated the performance of pastes and mortars
with 20% fly ash as OPC repl.

_|/— Piston

,—— Inner cylinder
P / ,— Outer cylinder

_

Moveable rod
weight 300g

Screw —— . ‘\ Vlcat
Apparatus

Base plate

Pore fluid extraction and
ICP-AES/titration/C114
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Performance of pastes and mortars with 20% fly ash as OPC
repl. — Table reports impact vs. Ctr fly ash

Material Vicat Setting Pore fluid Mortar Flow Strength Strength Exp. lime
time pH Flow retention | (early —1d) | (later — 91d) water
Ctr ash doped . . . . High
w/ CaSO, Minimal NA Minimal Minimal Minimal >11%S0,
Ctr ash doped . . . . High
Cas0,.2H,0 Minimal NA Minimal Minimal Minimal >11%S0,
FBC fly ash Retards (1.5x) NA Reduces | Minimal Minimal Increasg b.Ut
meets limit
Ctr ash doped . . ..
CaS0,.%H,0 NA Minimal Minimal Minimal smal
HSFAL & Significant - . increase
HSFA2 delay (3x) NA Minimal | Increases Minimal
Ctr ash doped $|gn|f|cant Minimal Minimal Increases
w/ Na,SO, increase sSmalll
ianifi i increase
TFA Flash setting Slgn|f|cant Minimal Rapid Increases
iIncrease loss

SITUC.,. J/J LU



FBC Fly Ash (contains CaSO,)

* Note the particle shape and
internal porosity of fly ash

* Modestly retards setting

* Causes expansion in
hardened mortar (DEF)

3 .*" ALAL e ‘ - : .
g\ U ’ . ol <P N 9
HY Mag WD Spot Sig HFW . 100.0pm

15.0 kV 1000x 10.8 mm 4.0 BSE 0.30 mm




Vicat setting time show delay up to 2hrs
Calorimetry: small shift in C;S and large shift in C;A peaks

450 4
400 1 5 35 - (]
erew— Vicat -8 3
5350 7 Indcator— yApparatus 'S |
E300 { e g 25
£ 250 - E 2
= —
200 - 15 C,S peak
= 0
£ 150 - o
(0] = 1 -
9 100 A e
5 051
50 A c
l_ O T I T I T I T I T I T I T I T I
0- » . 0 4 8 12 16 20 24 28 32
Initial set Final set Age (hours)
= PC-| = CFA FBC FBC + 2% CBr —_CEA FBC
Slight set retardation which is Slight C,S retardation (2hrs) and
compensated by using CaBr, large shift in C,A peak
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Length change (%)

Limewater expansion continues over time
(presumably due to ettringite formation)

ASTM C1038

0 50 100 150 200

-B-HSFA1l

—0-HSFA2

-4 TFA

---ASTM limit
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C;A mass %
(binder basis)

Gyp mass %

FBC fly ash supplies CaSO, which delays C;A hydration
and forms ettringite causing expansion

(binder basis)
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Fly ash containing CaSO,

Vicat Setting Pore fluid Flow Flow Strength Strength Exp. lime
time pH retention | (early —1d) | (later — 91d) water

Ctr ash doped . . ..
CaS0,.%2H,0 -- Small

Material ‘

HSFA1 & Significant . . increase
HSFA2 | delay () --



CaSO;, initial and final setting by >4hrs.
Accelerators can help.

Time (min)

Initial set Final set
mPC- mCFA
m HSFA1 HSFA1 + 3% CBr
WHSFA2 m HSFA2 + 3% CBr
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CaS0O, delays both C,S and C;A hydration.

Cumulative heat (and strength) cross over at ~3 days.
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QXRD: CaSO, retards rxn of C;S, C,A, Gyp w/in the first 24h.
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ICP: CaSO, lowers [OH], maintains higher [SOx]
(due to reduced C,S hydration and C-S-H availability as [SOx] sink)
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CaSO0;, solubility is low (2mM), so its particle size matters!
(finer CaSO, leads to further setting delay)

SO, content = 13.25%

A
14 \
A
500 A .

r \ Final set
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Initial set Final set
mPC ECFA 7 HSFA1 DFA - H1

BDFA-H1M =DFA-H2 8DFA - H2M

Beneficiation options:
1.

Material Particle size (um
D90
Han-1 8.8 58.8 214.4
Han-1 milled 3.0 24.7 74.7
Han-2 8.4 14.8 24.8
Han-2 milled 2.1 9.3 18.5
HSFA1 1.4 5.9 35.0
HSFA2 1.7 12.2 43.8

Accelerators (chemical or fine LS

powder)

Acid washing (generates SO, gas)
Discard fine fraction of fly ash (<3um)
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Conclusions

Both the form and content of SO, in fly ash matter.
The 5.0% SO, limit of ASTM C618 maybe too conservative.

Instead, we recommend performance testing for flow, set time, strength, and
expansion of mortar.

CaSO, (in FBC fly ash) leads to ettringite formation and risk of expansion only
when 5SO,211%.

CaSO, (and SO, ions) retard C,S hydration = delay C;A and Gyp consumption.

More work needed in understanding long-term hydration, durability, and

methods to offset setting delays. Thank you very much!
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Fly ash containing Na,SO, (e.g., trona contaminated ash)

Material

Vicat Setting

time

Pore fluid
pH

Flow
retention

Strength
(early — 1d)

Strength
(later — 91d)

Exp. lime

water

Ctr ash doped S_|gn|f|cant Minimal Minimal Increases Reduces
w/ Na,SO, increase
TFA Flash setting S_lgnlflcant Minimal Rapid Increases Reduces
increase loss

Small
increase

Slide: 22/20



Higher Na,SO, in fly ash leads to higher pore solution pH; Good
news: pH-regulating admixtures work

Pore solution pH

14.5
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Alkali content of binder (Na,O.,%)

Pore fluid pH
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=
w
|
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| ASR Risk

Age (days)
m CFA+2%CAC
m TFA+5%CAC

= CFA
B TFA (6.14% SO5)

Na,S0O, + Ca(OH), = 2 NaOH + CaS0O,
Ca(CH;C00),+2 NaOH — 2 Na(CH;COO) + Ca(OH),
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Doping Na,SO, in fly ash slightly accelerates setting,
but trona fly ash flash sets, why?

300 Na,CO, accelerates C,;A hydration
x PC-I DFA - Sodium sulfate A TFA 300 -
= 250 -
S - £
P 200 7 cra Precision IimitI E 200
I 1 S £ 150
= =
C_U’s 100 100
= 50 A
=
A 0-
0 Initial set Final set

0% 2% 4% 6% 8% 10% 12% 14%
SO, content of fly ash (%)

mPC-l mCFA mTFA = TFA + 5% CAc

Ca(CH5C00),+ (Na,C0,/Na,S0,) - 2 Na(CH;CO00) + (CaCO3/CaS0,)

Slide: 24/20



Thermal power
(mW/g binder)
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Na,CO, accelerates C;A and C,S hydration;
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Time (min)

CaSO, delays both C,S and C,A hydration
Accelerators can help

4
35
)
_ T 5.
O
0 - o
_ S25 A
0 - E
| S 2
0 S
] 215 -
-1 ©
=
51
I =
0 0.5 -
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[ PC_l [} CFA 0 I T I T I T I T I T I | I | I T
0 4 8 12 16 20 24 28 32
m HSFAL HSFAL + 3% CBr Age (hours)
mHSFA?2 m HSFA2 + 3% CBr —CFA —HSFA1 —HSFA2
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Existing standards limit SO, and alkali content in fly ash; validity of
limits tested using doped and real systems

Standard SO, limit

Na,O, limit

ASTM C618 Max 5.0% Report Based on OPC performance?

ASTM C595 Max 4.0% (IP) Report Higher SO, allowed — C1038 expansion limit
Max 4.0%: e

ASTM C1778 None <3.0% pref. Low pH for ASR mitigation

« Testing doped systems allows wide range and variety

* SO, levels chosen based on:

= HSFA/HSAFA observed in literature and those obtained for testing
» Represents values below & above ASTM limits

Doped fly ash (DFA) SO, content

3%

5%

7% 9%

11%

Binder SO, content

3.75%

4.15% 4.55% 4.95%

5.35%

 PC replacement level fixed at 20% by mass
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Fine hannebachite and sodium sulfite both showed significant

setting delay — effect of sulfite ion

600
500 -
400
300 -
200 -
100 -
O _
Initial set Final set
 PC-| mm CFA
mm HSFAL B Han-1
m Han-1 milled Han-2
m Han-2 milled ==-50 mM sodium sulfite
==-75 mM sodium sulfite = =100 mM sodium sulfite

HSFA1 - 13.3% SO,

600

500

400

300

200 H

100

0 _

Initial set

 PC-|

e HSFA2

B Han-1 milled

mm Han-2 milled

==<75 mM sodium sulfite

Final set
mm CFA
s Han-1
Han-2
= =50 mM sodium sulfite
= =-100 mM sodium sulfite

HSFA2 - 11.8% SO,
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20%

Ettringite content (% of unhydrated binder)
o
N

0%

15%

5%

m 7-day

m 28-day

= 56-day

0.42 w/b; 255 replacement level




All SO, forms result in expansion of hardened mortar
but only CaSO, at SO,>11.0% exceeds the limit

0.025%

0.020%

14-day expansion in limewater

0.000% -

1 ASTM C1038 results (14 days)

)
oA .
] I 4/§\
i / . . \$
; [
0% 2% 4% 6% 8% 10% 12%

SO, content of fly ash (%)

14%

DFA - Gypsum
—o—DFA - Hannebachite
DFA - Sodium sulfate
DFA - Anhydrite
HSFA1
® HSFA2
FBC
A TFA
=== ASTM limit
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