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RESEARCH SIGNIFICANCE 

Self-compacting concrete is very popular nowadays for self-flowability and self-compaction. 

It becomes easy to cast at a location where normal concrete cannot be cast. Before using the 

concrete, it is important to determine the design compressive strength of the concrete. 

Normally, the strength is determined by using the traditional method, i.e., making a cube or 

cylindrical specimen and testing the specimen in the laboratory, which is very time-consuming. 

One has to wait 28 days to get the compressive strength of concrete. 

Artificial Neural Network is being used widely in different sector of engineering. In Civil 

Engineering, ANN also can be used to determine the compressive strength of self-compacting 

concrete. Once the ANN model is trained using the proper algorithm, the compressive strength 

of concrete can be predicted without waiting for 28 days or more. 

Therefore, this research is conducted to develop an optimum neural network model using the 

proper algorithm to predict the compressive of self-compacting concrete. 
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EXECUTIVE SUMMARY 

A special type of concrete that flows and consolidates under its weight is called self-

compacting concrete. It Is installed without any vibration due to its excellent deformability and 

flowability. As it is being used in important construction projects nowadays, evaluating its 

compressive strength is very essential. An artificial neural network (ANN) is predicting tool 

which can be used to predict output in various sectors. In this study, the compressive strength 

of industrial waste such as fly ash and silica fume incorporated self-compacting concrete is 

evaluated at various ages. A nonlinear relationship was used to develop the model relating mix 

composition and SCC compressive strength. The experimental and expected outcomes were 

compared with the model prediction to evaluate the predictive capacity, generalize the 

generated model, and observe suitable matches. The developed ANN network can predict the 

desired output i.e., compressive strength incorporating industrial waste. Furthermore, the 

influence of individual parameters viz. cement, silica fume, and fly ash, w/b were also 

evaluated using parametric analysis. As a result, overall, a higher correlation coefficient of 

0.9835with a smaller value of MAPE (0.0347) and RMSE (2.4503) is obtained. 

 

Keywords: ANN; Self-compacting concrete; Artificial Neural Network; Back-propagation; 

SCC. 
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CHAPTER 1  

INTRODUCTION 

1.1 General 

As a material for construction, concrete has been used for more than a century. The material 

has continued to develop during this time, such as the increased usage of secondary 

cementitious elements in the binding phase (Heniegal, 2012; Neville, 2011). Due to the self-

flow, and self-compaction, SCC is installed without any outward vibration that makes the 

concrete technology revolutionized (Okamura & Ouchi, 2003; Raheman & Modani, 2013). 

SCC is different from ordinary concrete in some random cases. Due to its high workability, 

higher amount of water, and fine content requirement, it has different properties from 

conventional concrete. Since its development, meaningful improvement was noted in its 

research and development (Kandasamy & Kothandaraman, 2020; Siddique et al., 2011). 

Self-compacting concrete can be produced using industrial waste such as fly ash, ladle slag, 

silica fume, etc. As fly ash and silica fume give extended durability for the construction project, 

these are frequently used to produce self-compacting concrete (Deilami et al., 2017; Joshi & 

Lohtia, 1997; Mazloom et al., 2018). Property enhancement of concrete at different curing 

states using these industrial byproducts has been documented. Particularly the benefits of long-

term water curing are evident (McCarthy et al., 2013). The effect of SCMs on the properties of 

SCC was studied by several researchers, including, fly ash (Guru Jawahar et al., 2018) and 

silica fume (Turk et al., 2013a), GGBS (Saini & Vattipalli, 2020). In addition, plastic fibers 

(Al-Hadithi & Hilal, 2016) and steel fibers (Grünewald & Walraven, 2001) are also used in 

SCC production. However, the mixing constituents and compressive strength have a non-linear 

relationship, and there is no theoretical or mathematical relationship between mixture ratio and 

SCC strength (ACI, 2019; Siddique et al., 2008). As a result, it is necessary to use appropriate 

methods to predict SCC strength based on the mixing ingredients during the design phase. 

Artificial Neural Networks (ANN) may be a suitable tool for making this prediction (Taylor, 

1992; Yadollahi et al., 2015). From creating examples or data, ANN is a flexible computer 

method that follows the neural system of a human being. The system is becoming increasingly 

popular, and it is being used in many engineering fields (Ashteyat & Ismeik, 2018; Taylor, 

1992; Ye et al., 2019). Neural network models can predict more specific concrete properties 

(Hameed et al., 2021) while reducing the experimental work required in the laboratory or 



 
10 

research center and on-site. The primary advantage of the neural network is it does not need 

any specific equations because it is based only on learning and understanding input-output 

connections for any complicated problem. 

1.2 Research Significance 

ANN has been proven by previous studies to be a reliable computer model for predicting 

concrete strength. It has been demonstrated that an ANN may be utilized to predict the strength 

of metakaolin-based concrete in a reasonable period and with low error. Compressive strength 

of SCC at various ages has been predicted utilizing ANN and was shown to be more practicable 

than classic regression models. Moreover, a neural network has been confirmed as an alternate 

path for finding out the approximate compressive strength containing fly ash and silica fume. 

A wide range (15 to 110 MPa) of compressive strengths of SCC, ANN was also utilized to 

forecast the ‘compressive strength’ of a regular and high strength SCC, also high-performance 

concrete including large amounts of fly ash and silica fume. (Serraye et al., 2021). 

This study is focused on contributing to developing an ANN model which can accurately 

forecast the compressive strength of SCC at various ages which contains silica fume and fly 

ash as partial cement replacement. 

1.3 Research Goals 

The aim of this research is to predict the strength of self-compacting concrete (SCC) by 

utilizing an ANN. The objectives of the projects are given below – 

 To develop an easy-to-use ANN model to predict the compressive strength of SCC 

containing silica fume and fly ash at different ages. 

 To evaluate the impact of silica fume, fly ash, and other constituents on the 

compressive strength of self-compacting concrete. 

 To investigate the impact of various mix design parameters on the compressive 

strength of SCC. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 General 

SCC, or self-compacting concrete, is a new sort of concrete with, high utility, and large paste 

volume, and contains cement substitute ingredients like silica fume, slag, fly ash, and pozzolana 

(Serraye et al., 2021). Cement substitute materials offer various benefits, including lower costs, 

less use of shared resources, less carbon dioxide emissions, and superior fresh and solidified 

qualities. In civil engineering, ANN is typically utilized to anticipate the performance of 

various designing materials, such as compressive strength, mixing constituents, durability, etc. 

Based on the data from 354 exploratory examinations, an ANN model is constructed for 

predicting the strength of self-compacting containing fly ash and silica fume by using the back-

propagation method along with the Levenberg-Marquardt technique. A nonlinear connection 

was found between the mix proportion and SCC compressive strength in the model developed. 

2.2 Silica fume and Fly-ash based SCC 

The heat of hydration is reduced, and durability is increased when cementitious materials are 

partially replaced with pozzolanic materials like fly ash. Fly ash decreases the necessity 

of viscosity-modifying agents and improves the slump flow of SCC mixtures. A few scientists 

have announced that the cementing effectiveness of fly ash will similarly depend upon the level 

of substitution, fly ash types, and kind of cement utilized. The cementing capacity of fly ash 

can be considered as 0.5 when the w/b ratios vary between 0.5 and 0.65. Besides, the adequacy 

of superplasticizer is improved when silica fume is used. Lately, silica fume has been proven 

to be very effective to produce high-strength, excellent performance concrete. Furthermore, 

using both a sufficient amount of superplasticizer and silica fume is advantageous since it 

allows for lower water/binder ratios for a given workability. Because of its reaction with 

calcium hydroxide framed at the time of cement hydration, silica fume is used as pozzolana 

which improves the workability of concrete because of its small grain size and durability 

features, which result in more cementitious materials. The following results may allow the use 

of significant levels of fly ash, as it is expected that the silica fume's existence will mitigate 

some of its adverse effects, such as a loss in initial strength. 



 
12 

2.3 Constituent of SCC 

2.3.1 Fly ash 

Fly ash is a byproduct of power plants burning pulverized coal that produces electricity. 

Mineral pollutions in coal (quartz, clay, shale and feldspar, quartz) meld together in suspension 

during combustion and float out with the exhaust gases from the ignition chamber. The 

interrelated material solidifies and cools as it rises, forming round sparkling particles known 

as fly ash.  

Fly ash reacts synthetically with calcium hydroxide, a result of the chemical interaction 

between water and cement, to generate additional cementitious materials that increase a variety 

of appealing qualities of concrete. All the fly ashes exhibit cementitious characteristics to 

different degrees, depending on the compound and actual properties of both the cement and the 

fly ash. The material interaction between calcium hydroxide and fly ash is frequently slower 

than the water and cement, that results in delayed concrete hardening. Two kinds of fly ash are 

generally utilized in concrete: Class C and Class F. High-calcium fly ashes contain Class C fly 

ash, with a less than 2% carbon concentration; Class F consists of low-calcium fly ashes with 

a less than 5% carbon content. 

 
 

Figure 2-1: Fly ash Figure 2-2: Silica Fume 

2.3.2 Silica fume  

Ferrosilicon or silicon metal composites produce silica fume. Probably the most valuable 

benefit of silica fume is the use of concrete. It is a reactive pozzolan due to its physical and 

chemical features. Concrete with silica fume has exceptionally high strength and is incredibly 

long-lasting. Silica fume is available from concrete additive suppliers and is often used during 
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the concrete manufacturing process once a decision has been made. Placing, restoring, and 

finishing silica-fume concrete necessitates careful attention on this.  

A small portion of silica fume (5 to 15%) can be used as a replacement for cement in concrete. 

The resulting droop is compensated for by either additional water expansion or the use of 

superplasticizers. Regardless, compared to the typical concrete mix, there is a substantial 

improvement in compressive strength. This is particularly true when superplasticizers are used. 

Similarly, silica fume can be used as a halfway replacement for concrete. Although the 

cementitious materials' weight remains the same, the limited fineness of silica fume causes an 

increase in water demand. 

2.4 ANN in Civil Engineering 

ANN is a prediction tool that is widely used nowadays to predict desired output and different 

sectors. In civil engineering, ANN can be used very effectively. It learns from experimental or 

analytical/theoretical data. These types of models are capable of classifying data, predicting 

values, and assisting in decision-making analogous to a response surface technique. Compared 

to traditional numerical analysis processes (e.g., regression analysis), a trained ANN can 

produce more trustworthy findings with far less processing work. (Asteris & Kolovos, 2019; 

Hornik et al., 1989). 

ANN functions similarly to the human brain's organic neural network (Hinton et al., 2006; 

Schmidhuber, 2015). The artificial neurons are the most fundamental component of a neural 

network. Like biological neurons, inputs are provided to the artificial neuron, which produces 

an output after processing it using a mathematical function. Weights are assigned to input 

parameters before the data reaches the neuron to replicate the biological neuron’s unpredictable 

nature. 

The ANN capability has been developed for a variety of structural engineering applications. 

Previously the various properties of concrete such as creep, shear strength, etc. were predicted 

utilizing ANN. (Asteris, Armaghani, et al., 2019; Hodhod et al., 2018). The technique was 

similarly applied to determine the cement-based mortar’s strength (Asteris, Apostolopoulou, et 

al., 2019). Neural network modeling was also utilized to predict the tensile strength of SCC 

(Mazloom & Yoosefi, 2013). In addition, ANNs have been used to monitor the structural health 

of civil infrastructures (Ye et al., 2019) and durability (Kellouche et al., 2021). 
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2.5 Advantages of ANN 

There are numerous benefits of artificial neural networks. Some of them are given below: 

1. Neural networks have the ability to self-learn and create output that is not limited by 

the input. 

2. Data loss has no impact on the system's functionality because the data is maintained in 

its networks instead of a database. 

3. Artificial neural networks may learn from past occurrences and use what they've 

learned in the future when a similar circumstance arises, allowing them to handle real-

time situations. 

4. It is used in situations where a rapid assessment of learned objective capability is 

necessary. 

5. Even if a neuron fails to react or a piece of data is absent, the network can recognize 

the problem and provide the desired result. 
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CHAPTER 3  

MATERIALS 

3.1 General 

The goal of this study is to use ANN to evaluate the compressive strength of SCC. The 

examination used a variety of worldwide standard methodologies. The materials utilized in this 

investigation will be described in this chapter. The material properties and mix design are 

obtained from the literature. 

3.2 Materials 

Cement (Ordinary Portland Cement), silica fume, fly ash, aggregates, superplasticizer, 

viscosity modifying agent, and water are generally used to produce SCC. The study evaluated 

the performance of SCC influenced by the concrete parameters using ANN. 

3.2.1 Cement 

For getting ready the concrete mixture the Ordinary Portland Cement (OPC) is utilized. 

Ordinary Portland Cement's usual composition is shown in Table 3-2, and its actual 

characteristics are presented in Table 3-1. 

Table 3-2: Typical cement composition 

Components CEM-I 

Clinker 95 – 100% 

Gypsum 0 – 5% 

 
Table 3-1: Properties of cement 

Properties Results 

Soundness Sound 

Fineness > 4000 cm2/gm 

Specific gravity 3.15 

Initial setting time 1 hour 5 minutes 

Final setting time 3 hour 20 minutes 

 



 
16 

3.2.2 Aggregate 

The characteristics of fine and coarse aggregate are shown in Table 3-5 and Table 3-3. A typical 

grading scheme for coarse aggregate is presented in Table 3-4. Fine and coarse aggregates are 

shown in Figure 3-3. 

 

Figure 3-1: Ordinary Portland Cement 

 

Table 3-5: Properties of fine aggregate 

Properties Value 

Specific gravity 2.60 

Absorption capacity 1.8% 

Fineness modulus 2.90 

Unit weight 1620 kg/m3 

 Table 3-3: Properties of coarse aggregate 

Properties Value 

Specific gravity 2.71 

Absorption capacity 1.0% 

Fineness modulus N/A 

Unit weight 1563 kg/m3 

 Table 3-4: Grading of coarse aggregate 

Sieve size (mm) % Passing % Retain 

12.5 100 0 

9.5 45 55 

4.75 0 45 
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3.2.3 Fly ash 

Fly ash was used partially as a cement substitute. The chemical and physical characteristics of 

fly ash defined by  ASTM C618 are given in Table 3-6 & Table 3-7. Typical fly ash is shown 

in Figure 2-1. 

 

 

Figure 3-3(b): Coarse aggregate 

 

 

Figure 3-3(a): Fine aggregate 

 

Table 3-6: Physical properties of fly ash 

Properties Results 

Colour Blackish gray 

Specific gravity 2.13 

Blaine Fineness 619 m2/kg 

 
Table 3-7: Chemical composition of fly ash (ASTM C618)  

Constituents % by weight 

Loss on ignition 4.17 

Silica (SiO2) 58.55 

Iron Oxide (Fe2O3) 3.44 

Alumina (Al2O3) 28.20 

Calcium Oxide (CaO) 2.23 

Magnesium Oxide (MgO) 0.32 

Total Sulphur (SO3) 0.07 

Insoluble residue – 

Alkalis; (a) Sodium Oxide (Na2O) 0.58 

(b) Potassium Oxide (K2O) 1.26 
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3.2.4 Silica fume 

Silica fume has also been used to replace cement in some cases. Table 3-8 lists the chemical 

and physical characteristics of silica fume as determined by. In Figure 2-2, standard silica fume 

is shown. 

3.2.5 Superplasticizer 

Plasticizers and superplasticizers delay the curing of concrete. Their use in concrete or mortar 

permits a decrease in the water/binder ratio without affecting the mixture's workability, 

allowing self-compacting and premium concrete production. Table 3-9 shows the standard 

physical and chemical characteristics of superplasticizers according to ASTM C494 / C494M. 

Table 3-9 Physical and Chemical properties of Superplasticizer (ASTM C494) 

Properties Values 

Appearance Light yellow or no color 

Specific Gravity 1.1 ± 0.02 

Viscosity 22 at 20°C 

Chloride content < 0.2 % 

Chemical base Polycarboxylic either 

pH 7 ± 1 

Relative density 1.09 ± 0.01 at 25°C 

Solid content Not less than 30% by weight 

Table 3-8: Chemical and physical properties of typical silica fume (ASTM Cl240) 

Properties Value 

Specific gravity 2.2 

Mean grain size (μm) 0.15 

Specific area (cm2/gm) 150000 – 300000 

Color Light to dark gray 

Silicon dioxide (SiO2) 85 

Aluminum oxide (Al2O3) 1.12 

Iron oxide (Fe2O3) 1.46 

Calcium oxide (CaO) 0.2 – 0.8 

Magnesium oxide (MgO) 0.2 – 0.8 

Sodium oxide (Na2O) 0.5 – 1.2 

Potassium oxide (K2O) 0.5 – 1.2 

Loss on ignition < 6.0 
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3.2.6 Viscosity Modifying Agent 

Viscosity modifying agents (VMA) can be used to improve the protection from segregation 

and bleeding. Their use, just on the other hand, allows for a change in mortar and concrete 

rheology and stream characteristics. This feature may be used to simplify a variety of concrete 

types. As a safety net, a small amount of VMA may be used in some of the SCC mixes to 

account for the unexpected group-to-clump variations in water content, which may easily 

transform stable blends into separated and dismissed loads (Benaicha et al., 2015; Leemann & 

Winnefeld, 2007). 

3.2.7 Mixing water 

Non-consumable water can be utilized for mixing and curing if the source does not contrarily 

affect the concrete properties. Tap water was used for the blending of concrete.
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CHAPTER 4  

RESEARCH METHODOLOGY 

4.1 General 

For the strength prediction of SCC using an Artificial neural network, a lot of reliable 

data/information of mix design and compressive strength is required. The more the accurate 

date, the more the reliable prediction is. The test data/information was obtained from available 

literature and in-house experimental results. These were then used to build this network model. 

Database Selection 

Determination of 
inputs and outputs 
neurons’ number 

Determination of 
hidden layers’ and 

nodes’ number 

Training model by 
iterative process 

Weights, bias, and 
errors calculations 

Trial and error 
process 

Determination of 
optimum ANN 

architecture 

Feeding unknown data 
sets to the network 

Expected outputs 
prediction 

Actual and predicted 
values comparison 

Figure 4-1: Work flow of the whole process 
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The development cycle of this model was separated into three primary segments. The central 

focus is on gathering and analyzing data on SCC which contains fly ash and silica fume only. 

The second section focused on determining various training parameters such as execution 

duration, performance function, and learning method as well as appropriate neural network 

models. Finally, the proposed ANN models were approved, and their performances were 

checked in the third and final phase, which included a comparison with other available test 

data. A flow diagram of the overall process is given in Figure 4-1. 

4.2 Architecture of ANN 

A back-propagation neural network is a multilayer, feed-forward (Hinton et al., 2006) network 

in which data transmits from the input to the output layer, with no back loops and nodes in the 

layers that make up the same layer, are not linked to each other. However, they are connected 

to all nodes in the preceding and next layers. The basic structure (Asteris & Kolovos, 2019) of 

a BPNN can be written as – 

 𝑁𝑁 − 𝐻𝐻𝑖𝑖 − 𝐻𝐻𝑖𝑖+1 − 𝐻𝐻𝑖𝑖+2−. . .−𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑀𝑀 (4-1) 

   

 
 

Figure 4-2: A 3-5-5-1 BPNN model structure Figure 4-3: ANN model with a single hidden 

layer 

Where, Hi denotes the number of nodes in the ith hidden layer for 𝑖𝑖 = 1, 2, … … ,𝑁𝑁𝐻𝐻𝑁𝑁, N 

represents the number of input neurons. M is the number of output neurons, and NHL is the 

number of hidden layers. Figure 4-2 shows a BPNN with three neurons in the input layer, two 

hidden layers with six neurons each, and one neuron in the output layer referred to as a 3-6-6-

1 BPNN. 
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Although researchers regularly suggest multilayer NN models, it should be emphasized that 

the models only with a single hidden layer have the ability to reliably predict any prediction 

challenge. In Figure 4-3, A representation of a single hidden layer neuron is shown. 

Every member inputs x1,..., xR is multiplied by the correlating weights wi, 1,..., wi, R for each 

neuron x, and the values of weight are delivered to the summation function's junction, which 

generates the dot product (W.x) of the weight vector W= [wi,1,..., wi,R] and the input vector x = 

[x1,..., xR]T. The net input n, is formed by adding the bias b to the dot product. 

 𝑛𝑛 = 𝑊𝑊. 𝑥𝑥 = 𝑊𝑊𝑖𝑖,1𝑥𝑥1 + 𝑊𝑊𝑖𝑖,2𝑥𝑥2 + ⋯+ 𝑊𝑊𝑖𝑖,𝑅𝑅𝑥𝑥𝑅𝑅 + 𝑏𝑏 (4-2) 

The ANN's complexity and performance may be influenced significantly by the transfer (or 

activation) function selected. Although sigmoidal activation or transfer functions are the most 

popular, other functions can also be employed. Various activation functions have been offered 

in previous studies (Lecun et al., 2015; Schmidhuber, 2015). The combined hyperbolic tangent 

sigmoid transfer function – ‘tansig’ and linear transfer function – ‘purelin’ were found to be 

suitable for the problem under consideration in this research. The training data is delivered into 

the network during the training stage, which attempts to map the input and output values. The 

weights are adjusted to obtain this mapping by reducing the following error function – 

 𝐸𝐸 =  �(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2 (4-3) 

Where yi and xi represent the network's exact value and forecast value, respectively. The 

optimization training method plays a critical part in creating a high-quality mapping, and a 

thorough analysis was conducted to determine the best fit for this challenge. Back-propagation 

technique is the most widely used method, as the name implies, in which data/information is 

sent backward to the network to change the weights and reduce the error function. An approach 

called gradient descent is utilized to correctly modify the weights, which calculates the 

gradients of the cost function, 

However, there is no reliable method for determining a network's ideal architecture prior to 

training. The concealed layers, on the other hand, must contain a minimal number of nodes. 

This is because the network may memorize the training data if there are too many hidden nodes. 
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The ANN would be unable to successfully interpolate between neighboring training data points 

in such circumstances. The network's ability to create an adequate relationship between input 

and output variables will be limited if there are too few hidden nodes (Anderson & McNeil, 

1992). Typically, the number of hidden layers and nodes is determined through trial and error. 

4.3 Dealing with Overfitting 

An obvious difficulty that emerges during the training stage of a network is overfitting. The 

network has done an excellent job of learning the provided training data at this point (the error 

function has very tiny), but when additional data is added to this network, the error increases 

dramatically. The prediction of the network is unsatisfactory. Numerous algorithms and 

techniques for deciding the optimum number of hidden nodes along with the hidden layers 

have been presented to avoid overfitting. Additionally, the training of the ANNs may be 

stopped before it has a chance to fully understand the data, and a normalization term may be 

introduced to the transfer function to smooth out the mapping (Asteris, Kolovos, et al., 2016; 

Boger & Guterman, 1997; Chen, 2013; Giovanis & Papadopoulos, 2015). 

  
Figure 4-4: Performance of the proposed model Figure 4-5: Training state of the proposed 

model 

Another dataset was utilized to verify the developed model to prevent over-fitting the neural 

network model to the data during iterative training. When the error for the validation set starts 

to rise, training is terminated. The training in this article ends at epoch 8, which has an MSE of 

11.043 (MATLAB). Figure 4-4 illustrates that when the validation test is simulated using the 

derived model, the error in the validation test increases after epoch 8. 
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A check for validation was performed from the beginning of epoch 0 to after each epoch, as 

shown in Figure 4-5. The training was ended since the MSE increased in 8 consecutive epochs, 

and the algorithm picked which epoch had the lowest MSE. 

4.4 Experimental Database 

An extensive and trustworthy dataset is required for any artificial neural network to function 

properly. A comprehensive range of experimental data was necessary to determine the 

connection between the mixing elements of self-compacting concrete and its observed 

characteristics. It is hard for a single researcher to generate enough experimental data to train 

ANN fully. Another difficulty is the accuracy of accessible data because the database trains the 

optimal developed network; hence, the trained network will fail to predict proper values if the 

data or information is misleading. Only a tiny group of inaccurate data can damage a larger 

volume of data. Table A-1 of Appendix-I shows the dataset that has been utilized in the 

proposed ANN model. The whole data is organized into nine input parameters (silica fume, fly 

ash and cement content, w/b ratio, coarse aggregates, fine aggregates, viscosity modifying 

agent (VMA), superplasticizer, and age of testing). The single output variable is the 

compressive strength of SCC.  

A database of 354 mixtures was collected from the literature, all of which had similar physical 

and chemical characteristics. The requirements for data identification were defined by the 

omission of a few SCC characteristics in some literature and the uncertainty of testing 

procedures and combination proportions. The values acquired experimentally were compared 

to the predicted results produced by the neural network. A pair of input vectors and output 

vectors were utilized for training the ANN. The input vector contained mixing variables in the 

network model, and the output vector had only one element, compressive strength. 

Most previous studies created databases based on their experimental results, restricting the 

results to their immediate environment; however, our database was created using various data 

sources, including literature from multiple countries, and it can be used in a broader range of 

situations. Table 4-1 shows the boundary values of variables used to develop the model. Table 

4-2 shows the range of these input and output variables and how they are distributed.  
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Table 4-1 Input and output ranges 

Constituents Minimum Maximum Average 

Input variables 

Water/binder 0.3 0.45 0.37 

Cement (kg/m3) 135 600 356.94 

Fly ash (kg/m3) 0 420 124.97 

Silica fume (kg/m3) 0 150 22.61 

Fine aggregates (kg/m3) 657 1166 908.46 

Coarse aggregates (kg/m3) 590 1000 731.27 

Superplasticizer (kg/m3) 0.585 13.8 5.31 

VMA (kg/m3) 0 4.03 0.1 

Age (days) 7 180 40.92 

Output variable 

Compressive strength (MPa) 17.7 106.6 56.47 

 

Table 4-2 Distribution of inputs variables in the database 
W/B Cement Fly ash 

Range (kg/m3) Ferq. Range (kg/m3) Ferq. Range (kg/m3) Ferq. 

0.25-0.31 42 100-250 91 0-115 183 

0.32-0.38 160 251-400 128 116-230 87 

0.39-0.44 120 401-550 119 231-345 69 

0.45-0.5 32 551-700 16 346-460 15 
      
Silica fume Fine aggregates Coarse aggregates 

Range (kg/m3) Ferq. Range (kg/m3) Ferq. Range (kg/m3) Ferq. 

0-40 261 650-790 78 550-675 171 

41-80 78 791-930 107 676-800 68 

81-120 92 931-1070 135 801-925 97 

121-160 1 1071-1200 34 926-1050 18 
      

Superplasticizer VMA Ages 

Range (kg/m3) Ferq. Range (kg/m3) Ferq. Range (days) Ferq. 

0.5-3.87 159 0-1.125 348 7 91 

3.88-7.25 64 1.126-2.25 0 28 170 

7.26-10.63 104 2.251-3.375 0 90 85 

10.64-14 27 3.376-4.5 6 180 8 
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4.5 Normalization of the Data 

The most important stage is considered to be the normalization of data for any type of challenge 

in the area of software-based computational approaches, i.e., artificial neural network 

strategies. This stage is a pre-processing stage. During this pre-processing stage of this 

investigation, the Min-Max normalization techniques were utilized (Delen et al., 2006). The 

Min-Max normalization approach was used to equalize the nine input variables (Table 4-1) and 

one output variable. According to Iruansi et al. (Iruansi et al., 2012), data must be normalized 

within the range indicated by suitable minimum and maximum limits values of the related 

variable to prevent issues related to poor learning rates of the network. The input and output 

variables were normalized using the equation (4-4), within the range [0.10,  0.90] in this study. 

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑥𝑥 − 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥)

𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥) −𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥) (4-4) 

Where, xnorm is the normalized value for the given data x. 

4.6 Development of Model 

4.6.1 Determination of input neurons 

The variables that impact concrete strength are used to calculate the number of input neurons. 

As there are too many factors, it is impossible to create the training architecture in a reasonable 

amount of time, which is also impractical in the view of an engineering strategy that permits 

for a ±10% error margin. During the early development stage, all conceivable variables are 

considered. 9 variables (fly ash, silica fume, w/b, cement, coarse aggregate, fine aggregate, 

superplasticizer, viscosity modifying agent, curing age) are considered to be fundamental input 

neurons in the proposed model (Figure 4-6). 

4.6.2 Determination of output neurons 

With time, the concrete's strength increases. The compressive strength after 28 days is a good 

indicator of design quality and control. The initial strength of concrete within 7 days after 

placing is critical in determining if the concrete can handle disposal and shoring reduction. The 

concrete strength is measured at four distinct ages. The basic number of output neurons is 

considered to be one neuron and utilized for the proposed model since we are interested in 

determining the compressive strength of SCC as an output. 
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Figure 4-6 Visual representation of the developed model 

4.7 Training algorithms 

4.7.1 General 

The different optimization methods were investigated, to determine the optimum training 

algorithm. These methods include the one-step secant, quasi-newton, gradient descent, and 

Levenberg-Marquardt. All of the ANNs under investigation have been tested using all of the 

training techniques described above. The Levenberg-Marquardt method (implemented by 

levmar), offered by far the best ANN prediction of the output parameter among these 

algorithms. This technique appears to be best for training feedforward back propagation neural 

networks with nonlinear issues that are moderately large (up to several hundred neurons per 

layer) (Lourakis, 2005). 

It is worth mentioning that the Levenberg–Marquardt algorithm differs significantly from the 

other methods (Lourakis, 2005). In addition to nonlinear problems, this technique seems to be 

the quickest for training feed-forward neural networks of a reasonable size (weights ranging 

from a few hundred to a few thousand). It is also well-implemented in the MATLAB software. 

Because the MATLAB environment has the built-in function to solve the matrix equation, 

hence its capabilities are improved. 
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4.7.2 Determination of ANN parameters 

Several distinct BPNN models were designed and deployed in this study. The model 

was trained using 248 mix data out of a total of 354 data pairs (70% of total data points) and was 

validated and tested using the remaining 107 data pairs (30% of the total pairs). More precisely, 

53 data pairs (15%) were used to validate the trained model, and 53 data pairs (15%) were used 

for testing the model. The ANNs' architecture includes a hidden layer with 5 to 30 neurons.. 

(Apostolopoulou et al., 2019; Armaghani et al., 2019; Asteris, Tsaris, et al., 2016; Cavaleri et 

al., 2017; Nikoo et al., 2017). The maximum allowable error is calculated by the rule described 

in the previous literature (Lee et al., 2001; Lee & Han, 2002). 

 𝑦𝑦 = 𝑡𝑡𝑚𝑚𝑛𝑛𝑡𝑡𝑖𝑖𝑡𝑡 (𝑥𝑥) =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
=

2
1 + 𝑒𝑒−2𝑥𝑥

− 1 (4-5) 

 𝑦𝑦 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑛𝑛 (𝑥𝑥) = 𝑥𝑥  (4-6) 

Equations (4-5) and (4-6) specify the transfer or activation function utilized in the training of 

the neural network model, which is a ‘tansig' and a ‘purelin' function. The output of the ‘tansig' 

function ranges from +1 to -1. 

 
Figure 4-7 Sigmoidal transfer function — tansig and purelin 

Table 4-4 summarizes the parameters that were employed in the ANN training. To compare 

the predictions generated by the neural network, the datasets are divided into three sets – 

training sets, validation sets, and testing sets. The data points are divided into three groups at 

random in the majority of the cases.  
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Table 4-3 Training parameters of the developed BBNN model 

Training parameters Values 

Training algorithm Levenberg-Marquardt 

Normalization Min-Max (0.1-0.9) 

No. of input neurons 9 

No. of hidden layers 1 

No. of neurons in hidden layer 25 

No. of output neurons 1 

Training goal 0 

Performance function MSE 

Transfer function Tansig & Purelin 

Time Infinite 

Learning cycle 1000 

Minimum gradient 1×10-7 

Maximum fail 6 

MSE: Mean square error 
Tansig: Hyperbolic tangent sigmoid transfer function 
Purelin: Linear transfer function 

4.8 Model Validation 

The capacity of a well-trained neural network model to extrapolate the predictions in addition 

to the training data and to operate reliably when given unexpected, unknown data ranging from 

the input variable’s range utilized during training is what determines its validity. Consequently, 

the developed ANN model's capacity to reliably predict the self-compacting concrete 

characteristics of new data gathered from other researchers who were not included in the 

training datasets must be evaluated. The more data there is, the more accurate an ANN forecast 

of SCC characteristics will be. 

The SCC’s strength had to be predicted by the developed model associated with each 

combination of values within the nine critical factors from a total of 16 unseen data (Liu, 2010; 

Naik et al., 2012; Turk et al., 2013a; Zhu & Bartos, 2003). Table 5-1 shows validation of new 

data records and comparison of predicted values using the optimum developed neural network 

model. The calculated relative percentage error in every prediction in Table 5-1 is calculated 

by Eqn. (4-7). 
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 𝐸𝐸(%) =  �
𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑂𝑂𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝

𝑂𝑂𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� × 100 (4-7) 

Where, Oactual is the actual output and Opredicted is the predicted output generated by the 

developed neural network model. 

The model validation is expressed as a total relative percentage error, which demonstrates that 

the developed model can reliably predict SCC compressive strength at various ages. 

4.9 Performance of the model 

There are several statistical indexes that are used to assess the performance of the neural 

network model. The network models developed in this paper were evaluated using three 

statistical indexes – Root mean square error (RMSE), Mean absolute percentage error (MAPE), 

and Pearson correlation coefficient (R2). These parameters are widely used and accepted 

(Chugh, n.d.; Vandeput, n.d.). Smaller RMSE and MAPE indicate more exact predictions. 

Higher R2 values indicate that the analytical and projected values are more correlated. The 

following formulas were used to determine the statistical parameters (Results given in Table 

4-6) stated above (Apostolopoulou et al., 2019) – 

 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 =  �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (4-8) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸 =  
1
𝑛𝑛
��

𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 (4-9) 

 𝑅𝑅2 =  1 − �
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

� (4-10) 

Where, yi and xi denote the actual and forecasted values respectively, and n denotes the total 

number of datasets. 

4.10 Optimum proposed BPNN model 

Various BPNN (back-propagation neural network) models have been created and examined to 

identify the best model for predicting self-compacting concrete compressive strength. In 

particular, 26 distinct ANN architectures have been developed based on the usage of one hidden 

layer. 
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Table 4-4 Statistical indexes of the optimum BPNN models 

SL No. BPNN Model Dataset R2 RMSE 

20 9-24-1 

Training 0.9807 3.135283 

Validation 0.8913 6.315061 

Test 0.9514 4.871345 

21 9-25-1 

Training 0.9912 1.746425 

Validation 0.9629 3.32265 

Test 0.9631 3.321144 

22 9-26-1 

Training 0.9823 2.57682 

Validation 0.9178 5.872819 

Test 0.9456 4.382921 

23 9-27-1 

Training 0.9922 1.723369 

Validation 0.9301 4.721229 

Test 0.9432 4.521062 

24 9-28-1 

Training 0.9948 1.403567 

Validation 0.9351 5.161395 

Test 0.9345 4.737088 

25 9-29-1 

Training 0.9851 2.336664 

Validation 0.9456 4.844585 

Test 0.9008 5.54617 

26 9-30-1 

Training 0.9872 2.142429 

Validation 0.9359 5.216321 

Test 0.9044 5.488169 

Table 4-5 shows seven cases of ANN models that have been developed. Appendix-II contains 

other cases of optimal BPNN models. The optimal BPNN model 9-25-1  is chosen based on 

the R2, and RMSE values for the compressive strength prediction. The chosen model 9-25-1 

refers to a neural network architecture consisting of nine input variables, one hidden layer with 

25 nodes, and one output neuron. The values of the statistical indexes R2, MAPE, and RMSE 

of the best proposed BPNN are shown in Table 4-6. 

Table 4-5 Coefficients of the optimum proposed neural network model. 

ANN model R2 MAPE RMSE 

9-25-1 0.9835 0.0347 2.4503 
R2: Pearson Correlation Coefficient 
MAPE: Mean Absolute Percentage Error 
RMSE: Root Mean Square Error 
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Figure 4-8 Actual vs predicted strength for the test dataset 

Figure 5-1 shows a comparison between the actual values and predicted values of the best 

BPNN model for all ages.  It is clearly demonstrated that he suggested optimal 9-25-1 model 

correctly forecasts the SCC’s compressive strength. It's worth mentioning that the variation of 

every sample utilized in the testing procedure is less than ±10%. (Figure 5-1). The two graphs 

in Figure 4-8 show the same conclusion, with experimental values compared to the suggested 

optimal 9-25-1 NN model's equivalent values for test datasets. 

As a result, the final model (Table 4-1) has nine input parameters, one hidden layer with 25 

hidden neurons, tansig and purelin as activation functions, and one output variable that is the 

SCC’s compressive strength.
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CHAPTER 5  

RESULTS AND DISCUSSION 

5.1 General 

The final goal of this research project is to develop the optimum neural network model and to 

establish a tool for practical uses. The developed model can be accepted if the model can predict 

the output effectively. The output of the dataset utilized in this investigation is checked via 

cross-validation. Cross-validation is a way of determining how accurate a developed model is. 

The input data pair is separated into multiple groups each used to evaluate a model that fits the 

remaining portion. 

Statistical approaches are frequently employed to create empirical relationships between 

numerous interacting elements. The process is usually complicated and convoluted, especially 

when dealing with nonlinear relations. The critical parameters must also be known to create 

the statistical model. On the other hand, backpropagation neural networks have a more 

straightforward modeling procedure since no mathematical equation is required for the input 

and output variables. ANNs help to study systems with many variables and identify patterns 

and features that were previously unknown. The neural networks are taught to handle noisy or 

imprecise data since they are trained on actual test data. The model may easily be updated when 

new data becomes available by retraining using the latest data patterns. 

For the strength prediction of industrial waste incorporated SCC, various BPNN models were 

created and evaluated. In particular, 26 distinct ANN architectures have been developed based 

on the usage of one hidden layer. Table 4-5 shows indexes of six ANN model cases that have 

been developed. The optimal BPNN model 9-25-1 is chosen based on the R2, and RMSE values 

for the compressive strength prediction. The chosen model 9-25-1 refers to a neural network 

architecture that has nine input variables and one output variable respectively, as well as one 

hidden layer with 25 nodes. The values of the statistical indexes R2, MAPE, and RMSE of the 

best proposed BPNN are listed in Table 4-6. 

For the comparison of actual values and predicted output by the best BPNN model, two graphs 

are plotted, as shown in Figure 4-8. It is clear that, within a small error margin, the suggested 

optimal 9-25-1 model can correctly forecast the industrial waste incorporated SCC’s 



 
34 

compressive strength. It is worth noting that the variation of almost every sample utilized in 

the testing procedure is less than ±10%. (Figure 5-1). 

The following figures show the actual and predicted strength to compare the model’s 

performance. Figure 5-1 depicts the overall performance of the ANN, forecasting the strength 

in all ages. Figure 5-2 to Figure 5-5 shows the strength prediction performance at 7, 28, 90, and 

180-day periods. The results indicate that most points are within the ±10% lines, implying that 

the networks may accurately predict SCC strength. The overall correlation coefficient of the 

model obtained was 0.9835, which is very high and a smaller RMSE value of 2.4503 compared 

to other similar studies (Nguyen et al., 2020; Uysal & Tanyildizi, 2011).  

The final trained model recalled data that had not been used at the training phase (354 mixes) 

to evaluate the accuracy of the ANN model. A total of 16 unknown combinations were 

presented to the developed model within the training data sets range to predict the output, i.e., 

SCC strength. Table 5-1 shows the proportion of mixtures (kg/m3), as well as the measured and 

predicted values. 

 

 

Figure 5-1: Actual v/s predicted strength for all ages 
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Figure 5-2. Actual v/s predicted strength for 7-

days. 

 
Figure 5-3. Actual v/s predicted strength for 28-

days. 

 
Figure 5-4. Actual v/s predicted strength for 90-

days. 

 
Figure 5-5. Actual v/s predicted strength for 180-

days. 
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5.2 Parametric Analysis of Developed ANN Model 

Parametric analysis of a model can be defined as a technique for identifying whether alterations 

in the input assumptions influence the output of the model (Grady, 2014). It is important to 

know the impact of input variables on the output variable. By parametric analysis, it is possible 

to know how much sensitive the input variables are. This offers feedback on the input variables 

that are more important and less. Furthermore, by deleting the inconsequential variables, the 

input space can be decreased, resulting in a reduction in the complication of the network and 

the necessary time for training. Therefore, a parametric analysis was conducted in this study to 

test the sensitivity of the input parameters to the output parameter i.e., SCC strength.  

This has been done by analyzing the effect of altering one parameter while keeping all others 

constant. Some key input variables were assessed for this purpose. As a result, functional 

relationships between the mixture variables and the compressive strength are established. 

Table 5-1: Actual and predicted strength (MPa) for testing data sets of ANN 
Input variables Output 

W/B Cement 
Fly 

Ash 

Silica 

fume 

Fine 

agg. 

Coarse 

agg. 
SP VMA Age 

Actual 

Strength 

Predicted 

Strength 
E(%) 

0.30 620 0 0 740 775 8.06 4.03 7 47.1 46.33 1.63 

0.31 589 0 31 740 775 8.06 4.03 7 56.5 56.52 0.03 

0.31 573 0 47 740 775 8.06 4.03 7 60.1 60.27 0.28 

0.30 620 0 0 740 775 8.06 4.03 28 60.2 60.72 0.87 

0.31 589 0 31 740 775 8.06 4.03 28 73.1 72.63 0.64 

0.31 573 0 47 740 775 8.06 4.03 28 76.3 77.46 1.53 

0.35 154 309 51 980 621 2.056 0 7 40.5 40.06 1.09 
0.32 220 247.5 82.5 685 880 8.89 0 90 68.3 69.32 1.50 
0.39 220 180 0 916 900 1.4 0 28 45 46.69 3.76 
0.30 540 0 60 1059 595 8.58 0 7 84.5 86.21 2.03 
0.40 600 0 0 810 660 13.8 0.9 7 35 37.35 6.70 
0.35 206 257 51 1001 621 2.57 0 7 48.2 47.97 0.47 
0.35 327 173 0 902 803 4.42 0 28 61.6 61.16 0.71 
0.45 371 159 0 768 668 0.86 0.082 28 41.4 40.01 3.35 
0.40 510 0 90 810 660 13.8 0.9 28 55.3 55.06 0.44 
0.40 428 0 23 1157 640 8.569 0 28 75.3 76.70 1.86 

SP: Superplasticizer 
VMA: Viscosity Modifying Agent 
E(%): Relative percentage error 
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5.2.1 Effect of fly ash content 

To evaluate the fly ash that how much it is sensitive to the compressive strength, fly ash was 

altered in different amounts with different cement content while keeping other parameters 

constant. In Figure 5-6, the impact of fly ash with different cement content is shown. The 

replacement level of fly ash has a considerable impact on the strength. 

Increasing the fly ash level with the increasing amount of cement content increased the 

compressive strength (28-day) until the optimum amount of fly ash and then decreased the 

strength. The increased amount of fly ash after the optimum level as a cement replacement has 

a direct relationship with the reduction in strength. Similar results have been found in 

previously published studies (Ahmad et al., 2020; Naik et al., 2012). 

The pozzolanic reaction of alumino-silicate oxides in fly ash with calcium hydroxide generates 

additional cementitious compounds. As a result, concrete containing fly ash gains strength over 

time. However, in general, the total cement and fly ash content over 550 kg/m3 was found an 

optimum range of total binder. Beyond this, the cement content replaces the fine aggregate, 

which interferes with the water demand and packing of the matrix (Chandra & Bendapudi, 

2015) 

5.2.2 Effect of Silica fume content 

Silica fume has a considerable impact on the strength of SCC. For the evaluation of the silica 

fume impact on the strength, the amount of silica fume was altered while other parameters were 

kept constant. The compressive strength (28-day) increases with the increasing amount of silica 

fume. Figure 5-7 shows the strength variation with varying amounts of silica fume replacement 

(from 0 to 130 kg) and different cement content. Previous studies also show the result (Turk et 

al., 2013a). 

This is because silica fume is a very active and fine mineral additive. In concrete, it enhances 

the bond between fine aggregate and the hydrated cement in the mix within a short period as 

the material is very fine. In addition, the unreacted material fills the very fine pores in the 

matrix (Abdi Moghadam & Izadifard, 2019). All these mechanisms increase the compressive 

strength of SCC. 
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Figure 5-6 Impact of fly ash on strength. 

 
Figure 5-7 Silica fume impact on SCC strength. 

5.2.3 Effect of w/b ratio 

Water-binder ratio is one of the most important parameters for any kind of concrete. The 

compressive strength has a direct relationship with the w/b ratio. This was notably true when 

making highly workable self-compacting concrete with a large amount of paste, frequently 

resulting in a greater w/b ratio (Neville, 2011). Figure 5-8 shows the strength change 

concerning the w/b ratio for varying amounts of fly ash after 28 days. The combined effects of 

the increasing amount of fly ash and w/b ratio reduce the strength after the optimum fly ash 

level at 28 days. Siddique (Siddique, 2011) also reported this phenomenon in their earlier study. 

The strength of concrete depends on its porosity. The hydration reaction requires a minimum 

amount of water. On the other side, more water (increased w/b ratio) causes the dilution of 

cement paste and increases the water-filled pore space between the particles (Beaudoin & 

Odler, 2019). Hydrates must grow larger to fill the gap space between them to interact and 

improve strength. In short, any extra water beyond the hydration requirement will produce 

more capillary pores, reducing the area of solid hydrates for the same cross-sectional area of 

concrete and lowering the strength. Sometimes, with a lower w/b ratio, desirable workability 

can be achieved by using a superplasticizer. However, the use of too much superplasticizer 

may affect the ultimate strength (Islam et al., 2019). 
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Figure 5-8 Effect of w/b ratio 

5.2.4 Effect of Superplasticizer 

Superplasticizer is critical for improving the rheological characteristics of SCC. Therefore, it 

is a necessary component for the production of SCC. Figure 5-9 shows the change in strength 

with varying SP dosages (4 to 12 kg) with the varying amounts of fly ash (50 to 150 kg) at 28 

days. 

With the increase of FA and superplasticizer, the strength of SCC at 28 days decreases. For a 

given flowability, the superplasticizer can enhance strength by reducing mixed water or 

lowering both water and cement content to reach the desired flowability and strength (Aïtcin, 

1995). The production of self-compacting concrete only with Portland cement, and fly ash 

causes the lower amount of superplasticizer requirement to achieve equivalent strength (Naik 

et al., 2012). However, the mechanism of superplasticizer with cement and the same with fly 

ash does not work similarly. Increasing superplasticizer content based on total cementitious 

binder would negatively impact the strength. A minor difference was noted with a change in 

fly ash content.  

The situation was different with silica fume. Figure 5-10 shows the change in 28-day 

compressive strength with various SP dosages (from 4 to 12 kg) for different silica fume 

concentrations. As the finest material, silica fume generally demands more water (Levy, 2012). 

Increased superplasticizer content may improve the situation with low water content, especially 

when using a higher amount of silica fume in the matrix. Furthermore, increasing the 
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superplasticizer concentration beyond an optimum level may negatively influence the 28-day 

strength (Neville, 2011). 

The decrease in strength after the optimum doses of SP is due to more water for concrete mixing 

since the addition of a superplasticizer. An increased amount of superplasticizer results in 

bleeding and segregation, affecting concrete’s cohesiveness and homogeneity, resulting in the 

SCC strength decreases (Ben Aicha, 2020). 

 
Figure 5-9. Effect of SP with fly ash. 

 
Figure 5-10. Effect of SP with silica fume. 

5.3 Weights and bias of the developed ANN model 

There is a common tendency of the researchers that they only describe the structure of the 

optimum neural network model without providing the final weights and bias values.  This is 

not a good practice that any design that does not deliver these benefits is of little utility to other 

researchers and practicing engineers. On the contrary, if a suggested neural network structure 

is associated with weights and bias values, it may be beneficial as it allows the 

developed model to be easily implemented, making it available to anybody enthusiastic about 

simulating challenges. 

In light of this, the weights and bias for both the hidden layer and output layer of the optimum 

developed model, are presented in Table 5-2. These values will be used to reliably predict the 

SCC compressive strength based on optimum ANN architecture by using the characteristics of 

the model. 
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Table 5-2 Weights and bias of the developed ANN model 

BPNN 9-25-1 

IW {1,1} LW 
{2,1}T B {1,1} B {2,1} 

(25x9) (1x25) (25x1) (1x1) 

0.3861 -0.4473 0.4919 0.0274 0.8131 1.3142 0.1048 1.2833 -1.5875 0.9962 -1.6549 -0.6427 
1.0395 -0.2965 -0.2982 -0.4424 0.5316 1.1786 0.1352 0.9777 0.4948 -1.4051 -1.7453   
-0.2321 -0.2157 -0.4404 0.1140 -1.0337 1.0060 0.9061 -0.7301 1.5175 -0.4738 1.8990   
-0.2823 0.4689 -0.7107 -0.0478 -1.4016 -1.1022 -1.0172 0.1878 0.7796 -0.7083 1.7008   
0.7149 -1.6305 -1.2778 -0.3979 -0.9373 0.4673 0.9046 0.1710 -0.5227 -1.0667 -1.9707   
0.9685 -0.7779 1.1270 -0.1479 1.9167 0.1299 -1.5541 1.7196 -0.2594 -0.4856 -1.8697   
1.9281 0.2177 0.0759 -0.4684 -1.3793 1.3550 1.5138 0.7255 0.3946 0.8545 -1.0466   
-0.1691 1.4644 -0.4006 0.3072 -1.8379 -0.9159 0.6371 -0.5948 1.0737 0.2871 1.0449   
0.3091 -0.7747 0.3626 0.0331 -0.3506 -0.6753 1.0043 -0.0761 1.1456 0.5239 1.5515   
0.6127 -1.4309 -0.5610 -1.6405 -1.9280 -0.4206 0.6837 -0.5580 0.2822 0.3924 1.3449   
0.7234 0.9496 0.7862 0.1525 0.4599 -0.5193 -0.1344 0.1630 -2.1063 -0.7570 -1.0688   
0.8253 -1.2847 -1.0034 -0.6834 0.5478 0.6240 0.6328 0.0740 -1.8104 -0.0328 -0.4352   
0.2207 -0.8225 -1.1234 -0.1373 -0.6733 -1.1219 -0.2812 1.9193 -2.3166 0.8236 -0.1502   
0.3545 1.0817 0.3916 -1.1905 -0.7781 0.2309 0.2823 -0.9864 -1.4884 -0.2995 0.4903   
-0.2682 -0.2869 0.2464 0.7185 0.8875 0.9881 1.8874 -2.2981 -0.6912 -0.1886 0.0859   
-0.2798 0.9279 -1.5636 1.1721 0.4103 -0.7516 0.6479 0.7328 1.3019 0.1447 0.2141   
0.6581 0.8694 1.1364 -0.0470 -1.6680 -0.6695 0.1035 -0.4887 -0.3012 -0.6475 -0.8591   
-0.6016 -2.1822 -1.1098 -0.7833 0.5695 0.6940 1.0854 1.4069 -1.3123 -0.5593 -1.1375   
0.4914 -1.6347 -1.3426 -1.1195 -1.8386 2.4454 0.6347 -1.6106 -0.2362 -1.3057 1.7809   
-1.3700 0.5219 -0.5910 0.3400 0.5876 1.2926 -1.4310 -0.7877 1.5973 -0.1393 -0.8487   
0.3590 0.6764 0.1044 0.0669 0.1056 -1.7477 0.6490 0.4066 1.0818 -0.5243 1.8353   
-2.5806 1.4288 -0.3096 0.1330 -2.1023 -1.0061 0.3953 0.4119 0.0472 -0.2485 -1.9827   
1.0294 -0.2437 0.7336 0.0214 1.9664 -1.2201 -0.2390 -0.8424 -0.5995 -0.5984 1.4398   
0.5215 -1.2627 0.0068 0.0489 -0.3049 -0.8894 0.5640 -1.1179 -0.6934 0.8124 1.6658   
0.1507 -0.1606 -0.7280 -0.7205 -0.4271 0.0389 1.1528 -0.5212 1.6653 0.5405 1.5548   

IW {1,1} = Values of weight matrix between input and hidden layer 
LW {2,1} = Values of weight matrix between hidden and output layer 
B {1,1} = Values of bias of the hidden layer 
B {2,1} = Values of bias of the output layer 
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATION 

6.1 General 

The main goal of the paper was to develop an optimum BPNN model and to develop a 

procedure to create a tool or program for practical uses. Following the goal, a network 

architecture is developed which can reliably predict the strength of SCC. Also, proposed an 

approach to creating a spreadsheet program for practical users. This spreadsheet can be very 

handy in the practical field. The following conclusion can be drawn from the research study – 

a) The proposed neural network architecture can make a reliable prediction as the trained 

network obtained very low RMSE (2.4503) and MAPE (0.0347) values. Also, the 

higher R2 (0.9835) value is obtained making the predicted values very similar to actual 

values. 

b) Using parametric analysis, the developed network can assess the sensitivity or influence 

of individual parameters. The impact of individual parameters on compressive of SCC 

was significant. The sensitivity result agrees with the previously published studies. 

c) Although the model prediction is limited to its boundary limits (ranges of input 

parameters), it can be easily retrained with a broader scope by utilizing the proposed 

optimum neural network model. 

6.2 Limitations 

Few limitations are observed for this proposed ANN model. These are listed in the following: 

• Only if the researcher or practitioner knows all of the experimental values for all of the 

input variables utilized in this study, then the proposed ANN model can be applied. 

• It is essential to note that the developed ANN model may be used with reliability for 

the variable values ranging between the minimum and maximum limits (as shown in 

Table 4-1); else, the projected value may not be as good as expected. 

• The proposed model is restricted to SCC with SF and fly ash. More investigation is 

required to determine the influence of ladle slag, metakaolin, and fiber-reinforced, etc., 

in SCC, as well as the workability of the material. 
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• Sometimes the input values outside the range, especially the zero value of the binder 

can lead to negative output values. 

6.3 Recommendations for future study 

Researchers have a lot of opportunities to study more about SCC through ANN. Some of them 

can be listed as follows: 

• As the developed ANN model is restricted to SCC with silica fume and fly ash, further 

research is required to evaluate the effect of other constituents such as metakaolin, ladle 

slag, polypropylene fiber, etc. in the self-compacting concrete. 

• The V-funnel time, J-Ring test result, the L-box ratio, Slump flow, etc., of the SCC can 

also be investigated by the ANN prediction model. 

• Elasticity modulus, water permeability, oxygen permeability, as well as durability of 

SCC with silica fume and fly ash can be investigated through ANN model development. 

• The effect of SCC in high temperatures can also be studied by the ANN model. 

• ANN model can be built up for zero values of the binder. 
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Appendix-I 

 

Table A 1: Data Sources 

W/B C FA SF FnA CA SP VMA Age F’c Author 

0.33 500 0 0 984 656 6.5 0 28 65 (Sabet et al., 2013) 

0.33 450 0 50 959 656 9.5 0 28 75.5 

0.33 400 0 100 935 656 12 0 28 79.5 

0.33 450 50 0 966 656 5.5 0 28 67 

0.33 400 100 0 948 656 4 0 28 80.5 

0.33 450 0 50 959 656 9.5 0 90 73 

0.33 400 0 100 935 656 12 0 90 79.5 

0.33 450 50 0 966 656 5.5 0 90 73 

0.33 400 100 0 948 656 4 0 90 79.5 

0.33 450 0 50 959 656 9.5 0 180 79.5 

0.33 400 0 100 935 656 12 0 180 87 

0.33 450 50 0 966 656 5.5 0 180 79.5 

0.33 400 100 0 948 656 4 0 180 87 

0.35 550 0 0 688 688 5.5 0 28 48 (Güneyisi et al., 

2015) 

 

0.35 467.5 82.5 0 677 677 5.3 0 28 45 

0.35 385 165 0 665 665 5.3 0 28 42 

0.35 522.5 0 27.5 684 684 6.4 0 28 53 

0.35 495 0 55 680 680 6.4 0 28 54 

0.35 440 82.5 27.5 670 670 6.2 0 28 47 

0.35 412.5 82.5 55 669 668 6.2 0 28 47 

0.35 357.5 165 27.5 661 661 5.6 0 28 43 

0.35 330 165 55 657 657 5.6 0 28 43 

0.30 600 0 0 1084 595 7.14 0 7 79.3 (Wongkeo et al., 

2014) 0.30 300 300 0 958 595 1.5 0 7 48.9 

0.30 240 360 0 933 595 1.02 0 7 37.9 

0.30 180 420 0 908 595 0.72 0 7 28.9 

0.30 570 0 30 1072 595 7.98 0 7 81.6 

0.30 540 0 60 1059 595 8.58 0 7 84.5 

0.30 300 270 30 958 595 2.22 0 7 56 

0.30 240 330 30 933 595 1.8 0 7 49.1 

0.30 180 390 30 908 595 1.2 0 7 39.5 

0.30 300 240 60 958 595 3.6 0 7 66.1 

0.30 240 300 60 933 595 2.88 0 7 55.1 

0.30 180 360 60 908 595 2.28 0 7 46.9 
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W/B C FA SF FnA CA SP VMA Age F’c Author 

0.30 600 0 0 1084 595 7.14 0 28 84 
 

0.30 300 300 0 958 595 1.5 0 28 66.4 

0.30 240 360 0 933 595 1.02 0 28 58 

0.30 180 420 0 908 595 0.72 0 28 45.6 

0.30 570 0 30 1072 595 7.98 0 28 95.3 

0.30 540 0 60 1059 595 8.58 0 28 100.5 

0.30 300 270 30 958 595 2.22 0 28 75.2 

0.30 240 330 30 933 595 1.8 0 28 63.4 

0.30 180 390 30 908 595 1.2 0 28 52.7 

0.30 300 240 60 958 595 3.6 0 28 85.2 

0.30 240 300 60 933 595 2.88 0 28 73.6 

0.30 180 360 60 908 595 2.28 0 28 61.2 

0.30 600 0 0 1084 595 7.14 0 90 88.3 

0.30 300 300 0 958 595 1.5 0 90 81.1 

0.30 240 360 0 933 595 1.02 0 90 68.8 

0.30 180 420 0 908 595 0.72 0 90 55.2 

0.30 570 0 30 1072 595 7.98 0 90 99 

0.30 540 0 60 1059 595 8.58 0 90 106.6 

0.30 300 270 30 958 595 2.22 0 90 89.5 

0.30 240 330 30 933 595 1.8 0 90 74.1 

0.30 180 390 30 908 595 1.2 0 90 61.6 

0.30 300 240 60 958 595 3.6 0 90 96.6 

0.30 240 300 60 933 595 2.88 0 90 85.9 

0.30 180 360 60 908 595 2.28 0 90 80.6 

0.35 514 0 0 1131 621 7.71 0 7 75.2 

0.35 257 257 0 1023 621 1.3364 0 7 44.6 

0.35 206 309 0 1001 621 0.9785 0 7 33.7 

0.35 154 360 0 980 621 0.6682 0 7 23.6 

0.35 489 0 26 1120 621 8.24 0 7 77.6 

0.35 463 0 51 1110 621 8.995 0 7 81.2 

0.35 257 231 26 1023 621 2.056 0 7 50.4 

0.35 206 283 26 1001 621 1.648 0 7 44 

0.35 154 334 26 980 621 1.1308 0 7 33.5 

0.35 257 206 51 1023 621 3.1868 0 7 53.1 

0.35 206 257 51 1001 621 2.57 0 7 48.2 

0.35 154 309 51 980 621 2.056 0 7 40.5 

0.35 514 0 0 1131 621 7.71 0 28 83 

0.35 257 257 0 1023 621 1.3364 0 28 59.2 



 
54 

W/B C FA SF FnA CA SP VMA Age F’c Author 

0.35 206 309 0 1001 621 0.9785 0 28 52.6 
 

0.35 154 360 0 980 621 0.6682 0 28 39.8 

0.35 489 0 26 1120 621 8.24 0 28 85.3 

0.35 463 0 51 1110 621 8.995 0 28 91.6 

0.35 257 231 26 1023 621 2.056 0 28 68.4 

0.35 206 283 26 1001 621 1.648 0 28 57.4 

0.35 154 334 26 980 621 1.1308 0 28 45.9 

0.35 257 206 51 1023 621 3.1868 0 28 75.4 

0.35 206 257 51 1001 621 2.57 0 28 64.7 

0.35 154 309 51 980 621 2.056 0 28 51.1 

0.35 514 0 0 1131 621 7.71 0 90 85.4 

0.35 257 257 0 1023 621 1.3364 0 90 70.9 

0.35 206 309 0 1001 621 0.9785 0 90 64 

0.35 154 360 0 980 621 0.6682 0 90 50.1 

0.35 489 0 26 1120 621 8.24 0 90 90.9 

0.35 463 0 51 1110 621 8.995 0 90 100.4 

0.35 257 231 26 1023 621 2.056 0 90 82.5 

0.35 206 283 26 1001 621 1.648 0 90 69.6 

0.35 154 334 26 980 621 1.1308 0 90 57.3 

0.35 257 206 51 1023 621 3.1868 0 90 86.6 

0.35 206 257 51 1001 621 2.57 0 90 78.9 

0.35 154 309 51 980 621 2.056 0 90 70.4 

0.40 450 0 0 1166 640 8.1 0 7 65.6 

0.40 225 225 0 1072 640 1.17 0 7 25.7 

0.40 180 270 0 1053 640 0.945 0 7 21.2 

0.40 135 315 0 1034 640 0.585 0 7 17.7 

0.40 428 0 23 1157 640 8.569 0 7 65.8 

0.40 405 0 45 1147 640 9.45 0 7 69.7 

0.40 225 203 23 1072 640 1.9393 0 7 32.1 

0.40 180 248 23 1053 640 1.5334 0 7 29.8 

0.40 135 293 23 1034 640 1.2628 0 7 18.2 

0.40 225 180 45 1072 640 2.88 0 7 36.5 

0.40 180 225 45 1053 640 2.34 0 7 37 

0.40 135 270 45 1034 640 2.07 0 7 22.9 

0.40 450 0 0 1166 640 8.1 0 28 72.4 

0.40 225 225 0 1072 640 1.17 0 28 41.9 

0.40 180 270 0 1053 640 0.945 0 28 35.7 

0.40 135 315 0 1034 640 0.585 0 28 31.7 
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W/B C FA SF FnA CA SP VMA Age F’c Author 

0.40 428 0 23 1157 640 8.569 0 28 75.3 
 

0.40 405 0 45 1147 640 9.45 0 28 79 

0.40 225 203 23 1072 640 1.9393 0 28 51.5 

0.40 180 248 23 1053 640 1.5334 0 28 39.2 

0.40 135 293 23 1034 640 1.2628 0 28 28.2 

0.40 225 180 45 1072 640 2.88 0 28 60.3 

0.40 180 225 45 1053 640 2.34 0 28 49.1 

0.40 135 270 45 1034 640 2.07 0 28 33.1 

0.40 450 0 0 1166 640 8.1 0 90 80.4 

0.40 225 225 0 1072 640 1.17 0 90 53.1 

0.40 180 270 0 1053 640 0.945 0 90 48 

0.40 135 315 0 1034 640 0.585 0 90 41.8 

0.40 428 0 23 1157 640 8.569 0 90 82.4 

0.40 405 0 45 1147 640 9.45 0 90 86.1 

0.40 225 203 23 1072 640 1.9393 0 90 64 

0.40 180 248 23 1053 640 1.5334 0 90 51.3 

0.40 135 293 23 1034 640 1.2628 0 90 42.3 

0.40 225 180 45 1072 640 2.88 0 90 71.4 

0.40 180 225 45 1053 640 2.34 0 90 63.8 

0.40 135 270 45 1034 640 2.07 0 90 52.5 

0.32 550 0 0 728 935 8.43 0 28 80.9 (Güneyisi et al., 

2010) 0.32 440 110 0 714 917 7.43 0 28 69.8 

0.32 330 220 0 700 899 7.43 0 28 60.9 

0.32 220 330 0 686 881 6.67 0 28 47.5 

0.32 522.5 0 27.5 724 930 9.56 0 28 80.4 

0.32 495 0 55 720 925 10.67 0 28 85.7 

0.32 467.5 0 82.5 716 920 12 0 28 84.4 

0.32 440 82.5 27.5 713 916 8.22 0 28 79.2 

0.32 330 165 55 699 898 9.11 0 28 67.2 

0.32 220 247.5 82.5 685 880 8.89 0 28 60 

0.44 450 0 0 826 868 3.5 0 28 61.5 

0.44 360 90 0 813 855 3.2 0 28 52.1 

0.44 270 180 0 801 842 2.96 0 28 44.7 

0.44 180 270 0 788 829 3 0 28 30.3 

0.44 427.5 0 22.5 823 865 4.88 0 28 60.7 

0.44 405 0 45 819 861 5.2 0 28 58.5 

0.44 382.5 0 67.5 816 858 7.76 0 28 71.1 

0.44 360 67.5 22.5 813 855 4.24 0 28 61.5 
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W/B C FA SF FnA CA SP VMA Age F’c Author 

0.44 270 135 45 801 841 4.52 0 28 46.9 
 

0.44 180 202.5 67.5 788 828 4.82 0 28 37.4 

0.32 550 0 0 728 935 8.43 0 90 91.1 

0.32 440 110 0 714 917 7.43 0 90 84.4 

0.32 330 220 0 700 899 7.43 0 90 77.9 

0.32 220 330 0 686 881 6.67 0 90 64.8 

0.32 522.5 0 27.5 724 930 9.56 0 90 91.8 

0.32 495 0 55 720 925 10.67 0 90 99.2 

0.32 467.5 0 82.5 716 920 12 0 90 96.7 

0.32 440 82.5 27.5 713 916 8.22 0 90 86.3 

0.32 330 165 55 699 898 9.11 0 90 80.1 

0.32 220 247.5 82.5 685 880 8.89 0 90 68.3 

0.44 450 0 0 826 868 3.5 0 90 73.6 

0.44 360 90 0 813 855 3.2 0 90 68 

0.44 270 180 0 801 842 2.96 0 90 60.3 

0.44 180 270 0 788 829 3 0 90 42.5 

0.44 427.5 0 22.5 823 865 4.88 0 90 71.2 

0.44 405 0 45 819 861 5.2 0 90 76.1 

0.44 382.5 0 67.5 816 858 7.76 0 90 74.8 

0.44 360 67.5 22.5 813 855 4.24 0 90 67.2 

0.44 270 135 45 801 841 4.52 0 90 57.6 

0.44 180 202.5 67.5 788 828 4.82 0 90 44.8 

0.44 450 0 0 826 868 3.5 0 90 73.6 (Gesoǧlu et al., 

2009) 0.44 360 90 0 813 855 3.2 0 90 68 

0.44 270 180 0 801 842 2.9 0 90 60.3 

0.44 180 270 0 788 829 3 0 90 42.5 

0.44 428 0 22.5 823 865 4.9 0 90 71.2 

0.44 405 0 45 819 861 5.2 0 90 76.1 

0.44 383 0 67.5 816 858 7.8 0 90 74.8 

0.44 360 67.5 22.5 813 855 4.2 0 90 67.2 

0.44 270 135 45 801 841 4.5 0 90 57.6 

0.44 180 202.5 67.5 788 828 4.8 0 90 44.9 

0.32 550 0 0 728 935 8.43 0 28 80.9 (Gesoǧlu & Özbay, 

2007) 0.32 440 110 0 714 917 7.43 0 28 69.8 

0.32 330 220 0 700 899 7.43 0 28 60.9 

0.32 220 330 0 686 881 6.67 0 28 47.5 

0.32 522.5 0 27.5 724 930 9.56 0 28 80.3 

0.32 495 0 55 720 925 10.67 0 28 85.6 
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W/B C FA SF FnA CA SP VMA Age F’c Author 

0.32 467.5 0 82.5 716 920 12 0 28 84.4 
 

0.32 440 82.5 27.5 713 916 8.22 0 28 79.2 

0.32 330 165 55 699 898 9.11 0 28 67.2 

0.32 220 247.5 82.5 685 880 8.89 0 28 59.9 

0.38 444 0 0 1010 777 4.44 0 28 53.8 (Behfarnia & 

Farshadfar, 2013) 0.38 421.8 0 22.2 1002 777 5.328 0 28 63 

0.38 399.6 0 44.4 994 777 6.66 0 28 63.8 

0.38 377.8 0 66.2 986 777 6.66 0 28 72.1 

0.38 444 0 0 1010 777 4.44 0 90 57 

0.38 421.8 0 22.2 1002 777 5.328 0 90 68 

0.38 399.6 0 44.4 994 777 6.66 0 90 67 

0.38 377.8 0 66.2 986 777 6.66 0 90 71.5 

0.35 500 0 0 967 694 8 0 28 78.5 (Bingöl & 

Tohumcu, 2013) 0.35 475 0 25 958 687 8 0 28 78.5 

0.35 450 0 50 954 685 9 0 28 82.5 

0.35 425 0 75 948 681 10 0 28 87 

0.35 375 125 0 938 673 7.5 0 28 61.5 

0.35 300 200 0 923 663 7.5 0 28 55 

0.35 225 275 0 908 652 7.5 0 28 43 

0.40 600 0 0 810 660 13.8 0.9 7 35 (Vivek & 

Dhinakaran, 2017) 0.40 570 0 30 810 660 13.8 0.9 7 34 

0.40 540 0 60 810 660 13.8 0.9 7 32 

0.40 510 0 90 810 660 13.8 0.9 7 31 

0.40 600 0 0 810 660 13.8 0.9 28 63 

0.40 570 0 30 810 660 13.8 0.9 28 60.1 

0.40 540 0 60 810 660 13.8 0.9 28 58.1 

0.40 510 0 90 810 660 13.8 0.9 28 55.3 

0.40 480 0 120 810 660 13.8 0.9 28 51.38 

0.40 450 0 150 810 660 13.8 0.9 28 45.08 

0.45 400 0 0 793 1000 1.3 0 7 46 (Khodabakhshian et 

al., 2018) 0.45 390 0 10 790.7 1000 1.45 0 7 48 

0.45 380 0 20 788.4 1000 1.45 0 7 48 

0.45 360 0 40 783.8 1000 1.6 0 7 53 

0.45 400 0 0 793 1000 1.3 0 28 52 

0.45 390 0 10 790.7 1000 1.45 0 28 59 

0.45 380 0 20 788.4 1000 1.45 0 28 60 

0.45 360 0 40 783.8 1000 1.6 0 28 66 

0.45 400 0 0 793 1000 1.3 0 180 62 
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W/B C FA SF FnA CA SP VMA Age F’c Author 

0.45 390 0 10 790.7 1000 1.45 0 180 71 
 

0.45 380 0 20 788.4 1000 1.45 0 180 73 

0.45 360 0 40 783.8 1000 1.6 0 180 77 

0.36 500 0 0 893 735 7 0 7 39 (Turk et al., 2013b) 

0.39 375 125 0 910 735 6.75 0 7 30 

0.38 350 150 0 910 735 6.75 0 7 33 

0.38 325 175 0 910 735 6.75 0 7 29.5 

0.38 300 200 0 910 735 6.75 0 7 28 

0.36 427.5 0 22.5 990 735 8 0 7 43.9 

0.38 405 0 45 990 735 8 0 7 47 

0.40 382.5 0 67.5 990 735 8 0 7 41 

0.40 360 0 90 990 735 8 0 7 40.5 

0.36 500 0 0 893 735 7 0 28 57.5 

0.39 375 125 0 910 735 6.75 0 28 50 

0.38 350 150 0 910 735 6.75 0 28 45 

0.38 325 175 0 910 735 6.75 0 28 43 

0.38 300 200 0 910 735 6.75 0 28 45 

0.36 427.5 0 22.5 990 735 8 0 28 58 

0.38 405 0 45 990 735 8 0 28 62.8 

0.40 382.5 0 67.5 990 735 8 0 28 68 

0.40 360 0 90 990 735 8 0 28 66.4 

0.37 360 0 40 1069 766 3.45 0 7 38 (Gholhaki et al., 

2018) 0.37 320 0 80 1062 761 5.37 0 7 40 

0.37 360 40 0 1070 767 2.68 0 7 39.5 

0.37 320 80 0 1065 764 2.11 0 7 41 

0.37 400 0 0 1085 778 5.75 0 28 38 

0.37 360 0 40 1069 766 3.45 0 28 54 

0.37 320 0 80 1062 761 5.37 0 28 57.5 

0.37 360 40 0 1070 767 2.68 0 28 48 

0.37 320 80 0 1065 764 2.11 0 28 52 

0.44 350 0 35 960 920 2.76 0 7 21.1 (Faez et al., 2020) 

0.44 350 0 35 960 920 2.76 0 28 26.1 

0.44 350 0 35 960 920 2.76 0 90 29.3 

0.33 550 0 0 970 722 7.7 0 7 38 (Choudhary et al., 

2020) 0.33 522.5 0 27.5 970 722 8.25 0 7 44 

0.33 440 82.5 27.5 970 722 3.3 0 7 47.5 

0.33 385 137.5 27.5 970 722 1.65 0 7 42.5 

0.33 330 192.5 27.5 970 722 1.21 0 7 37.5 
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0.33 550 0 0 970 722 7.7 0 28 55.5 
 

0.33 522.5 0 27.5 970 722 8.25 0 28 58 

0.33 440 82.5 27.5 970 722 3.3 0 28 51 

0.33 385 137.5 27.5 970 722 1.65 0 28 54 

0.33 330 192.5 27.5 970 722 1.21 0 28 45 

0.33 550 0 0 970 722 7.7 0 90 57 

0.33 522.5 0 27.5 970 722 8.25 0 90 60 

0.33 440 82.5 27.5 970 722 3.3 0 90 60 

0.33 385 137.5 27.5 970 722 1.65 0 90 59 

0.33 330 192.5 27.5 970 722 1.21 0 90 56 

0.39 220 180 0 916 900 1.4 0 28 49 (Patel et al., 2004) 

0.39 220 180 0 916 900 1.4 0 28 49 

0.39 160 240 0 886 900 1.4 0 28 44 

0.34 198 232 0 874 900 0.86 0 28 46 

0.39 248 203 0 808 900 1.575 0 28 50 

0.39 220 180 0 916 900 1.4 0 28 49 

0.43 237 133 0 960 900 1.85 0 28 46 

0.39 280 120 0 946 900 1.4 0 28 45 

0.43 170 200 0 930 900 0.74 0 28 31 

0.39 220 180 0 916 900 1.4 0 28 47 

0.36 198 232 0 872 900 2.15 0 28 52 

0.39 220 180 0 916 900 1.4 0 28 45 

0.43 170 200 0 928 900 1.85 0 28 33 

0.38 250 257 0 787 853 2.42 0 7 34 (Bui et al., 2002) 

0.36 427 115 0 779 844 2.76 0 7 52.1 

0.35 327 173 0 902 803 4.42 0 7 50.2 

0.35 380 145 0 788 854 2.2 0 7 53.2 

0.33 350 186 0 786 851 2.4 0 7 51.1 

0.35 380 192 0 931 621 2.27 0 7 45.7 

0.41 350 162 0 768 840 1.94 0 28 51.7 

0.38 250 257 0 787 853 2.42 0 28 51.5 

0.36 427 115 0 779 844 2.76 0 28 59.4 

0.35 327 173 0 902 803 4.42 0 28 61.6 

0.35 380 145 0 788 854 2.2 0 28 73.5 

0.33 350 186 0 786 851 2.4 0 28 70.4 

0.35 380 192 0 931 621 2.27 0 28 67.8 

0.41 465 85 0 910 590 10.73 0 7 29.55 (Siddique, 2011) 

0.41 440 110 0 910 590 11.01 0 7 27.99 
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0.42 415 135 0 910 590 9.91 0 7 25.52 
 

0.43 385 165 0 910 590 9.91 0 7 23.98 

0.44 355 195 0 910 590 9.91 0 7 22.78 

0.41 465 85 0 910 590 10.73 0 28 35.19 

0.41 440 110 0 910 590 11.01 0 28 33.15 

0.42 415 135 0 910 590 9.91 0 28 31.47 

0.43 385 165 0 910 590 9.91 0 28 30.66 

0.44 355 195 0 910 590 9.91 0 28 29.62 

0.41 465 85 0 910 590 10.73 0 90 58.99 

0.41 440 110 0 910 590 11.01 0 90 52.86 

0.42 415 135 0 910 590 9.91 0 90 43.77 

0.43 385 165 0 910 590 9.91 0 90 41.96 

0.44 355 195 0 910 590 9.91 0 90 40.88 

0.45 530 0 0 768 668 0.86 0.082 28 30 (Dhiyaneshwaran et 

al., 2013) 0.45 477 53 0 768 668 0.86 0.082 28 32.2 

0.45 424 106 0 768 668 0.86 0.082 28 37.9 

0.45 371 159 0 768 668 0.86 0.082 28 41.4 

0.45 318 212 0 768 668 0.86 0.082 28 37.2 

0.45 265 265 0 768 668 0.86 0.082 28 35.9 

0.45 530 0 0 768 668 0.86 0.082 7 20 

0.45 477 53 0 768 668 0.86 0.082 7 23.4 

0.45 424 106 0 768 668 0.86 0.082 7 26.7 

0.45 371 159 0 768 668 0.86 0.082 7 29.16 

0.45 318 212 0 768 668 0.86 0.082 7 28.6 

0.45 265 265 0 768 668 0.86 0.082 7 27.2 

0.35 500 0 0 967 694 8 0 28 78.6 (Bingöl & 

Tohumcu, 2013) 0.35 475 0 25 958 687 8 0 28 78.6 

0.35 450 0 50 954 685 9 0 28 82 

0.35 425 0 75 948 681 10 0 28 88 

0.35 375 125 0 938 673 7.5 0 28 62.5 

0.35 300 200 0 923 663 7.5 0 28 55 

0.35 225 275 0 908 652 7.5 0 28 42.7 

0.40 480 0 0 890 810 13.3 0 28 52 (Prajapati 

Krishnapal, 2013) 0.40 432 48 0 890 810 9.9 0 28 46 

0.40 384 96 0 890 810 9.68 0 28 42 

0.40 336 144 0 890 810 9.4 0 28 40 

0.45 450 0 0 890 810 9.25 0 28 50 

0.45 405 45 0 890 810 8.2 0 28 45 
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0.45 360 90 0 890 810 6.4 0 28 41 
 

0.45 315 135 0 890 810 4.8 0 28 39 

0.40 480 0 0 890 810 13.3 0 7 36 

0.40 432 48 0 890 810 9.9 0 7 33 

0.40 384 96 0 890 810 9.68 0 7 26 

0.40 336 144 0 890 810 9.4 0 7 24 

0.45 450 0 0 890 810 9.25 0 7 32 

0.45 405 45 0 890 810 8.2 0 7 31 

0.45 360 90 0 890 810 6.4 0 7 24 

0.45 315 135 0 890 810 4.8 0 7 22 

W/B: Water/binder ratio 
C: Cement 
FA: Fly ash 
SF: Silica fume 
FnA: Fine aggregates 
CA: Coarse aggregates 
SP: Superplasticizer 
VMA: Viscosity modifying agent 
F’c: Compressive strength 
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Appendix-II 

Table B 1: Statistical indexes of the investigated BPNN models 

SL No. BPNN Model Dataset R2 RMSE 

1 9-5-1 

Training 0.9663 3.4842503 

Validation 0.9465 4.5022217 

Test 0.9241 5.2773099 

2 9-6-1 

Training 0.9592 3.8600518 

Validation 0.9245 5.5569776 

Test 0.9305 4.9020404 

3 9-7-1 

Training 0.9629 3.6945906 

Validation 0.9518 4.2906876 

Test 0.9423 4.6733286 

4 9-8-1 

Training 0.9763 2.9444864 

Validation 0.9195 5.6603887 

Test 0.8934 5.9312731 

5 9-9-1 

Training 0.9734 3.0413813 

Validation 0.9359 4.9779514 

Test 0.8868 7.1888803 

6 9-10-1 

Training 0.9839 2.3065125 

Validation 0.9364 4.9081565 

Test 0.9628 3.6619667 

7 9-11-1 

Training 0.9821 2.6019224 

Validation 0.9268 5.745433 

Test 0.8964 5.1029403 

8 9-12-1 

Training 0.9628 3.7296112 

Validation 0.9048 5.7628118 

Test 0.8898 6.6030296 

9 9-13-1 

Training 0.9825 2.521904 

Validation 0.8694 6.4660653 

Test 0.9349 5.1097945 

10 9-14-1 

Training 0.9750 2.9171904 

Validation 0.9328 4.6968074 

Test 0.9397 5.7297469 
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SL No. BPNN Model Dataset R2 RMSE 

11 9-15-1 

Training 0.9734 3.0430248 

Validation 0.9181 5.097058 

Test 0.9428 5.2886671 

12 9-16-1 

Training 0.9324 5.052722 

Validation 0.9164 5.3366656 

Test 0.8853 7.2518963 

13 9-17-1 

Training 0.9864 2.2135944 

Validation 0.9510 4.2614552 

Test 0.9274 4.8155997 

14 9-18-1 

Training 0.9677 3.4058773 

Validation 0.9057 5.937171 

Test 0.9475 4.9507575 

15 9-19-1 

Training 0.9857 2.2956481 

Validation 0.9214 5.884726 

Test 0.9044 5.7489129 

16 9-20-1 

Training 0.9872 2.2825424 

Validation 0.9149 5.6665686 

Test 0.8703 6.9152006 

17 9-21-1 

Training 0.9847 2.3086793 

Validation 0.9510 4.9638695 

Test 0.9407 4.3185646 

18 9-22-1 

Training 0.9896 1.9595918 

Validation 0.9107 5.2038447 

Test 0.9390 5.0566788 

19 9-23-1 

Training 0.9942 1.43527 

Validation 0.9218 5.2801515 

Test 0.9063 5.7576037 

BPNN: Back propagation neural network 
R: Correlation coefficient 
RMSE: Root mean square error 
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