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A clear understanding of the effects of torsion on concrete 
members is essential to the safe, economical design of reinforced 
and prestressed concrete members. This report begins with a brief 
and systematic summary of the 180-year history of torsion of 
structural concrete members, new and updated theories and their 
applications, and a historical overview outlining the development 
of research on torsion of structural concrete members. Historical 
theories and truss models include classical theories of Navier, 
Saint-Venant, and Bredt; the three-dimensional (3-D) space truss of 
Rausch; the equilibrium (plasticity) truss model of Nielson as well 
as Lampert and Thürlimann; the compression field theory (CFT) 
by Collins and Mitchell; and the softened truss model (STM) by 
Hsu and Mo.

This report emphasizes that it is essential to the analysis of torsion 
in reinforced concrete that members should: 1) satisfy the equi-
librium condition (Mohr’s stress circle); 2) obey the compatibility 
condition (Mohr’s strain circle); and 3) establish the constitutive 
relationships of materials such as the “softened” stress-strain rela-
tionship of concrete and “smeared” stress-strain relationship of 
steel bars.

The behavior of members subjected to torsion combined with 
bending moment, axial load, and shear is discussed. This report 
deals with design issues, including compatibility torsion, span-
drel beams, torsional limit design, open sections, and size effects. 
The final two chapters are devoted to the detailing requirements 
of transverse and longitudinal reinforcement in torsional members 
with detailed, step-by-step design examples for two beams under 
torsion using ACI (ACI 318-11), European (EC2-04), and Cana-
dian Standards Association (CSA-A23.3-04) standards. Two design 
examples are given to illustrate the steps involved in torsion design. 
Design Example 1 is a rectangular reinforced concrete beam under 
pure torsion, and Design Example 2 is a prestressed concrete 
girder under combined torsion, shear, and flexure.

Keywords: combined action (loading); compatibility torsion; compression 
field theory; equilibrium torsion; interaction diagrams; prestressed concrete; 
reinforced concrete; shear flow zone; skew bending; softened truss model; 
spandrel beams; struts; torsion detailing; torsion redistribution; warping.
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CHAPTER 1—INTRODUCTION AND SCOPE
1.1—Introduction

Accounting for the effects of torsion is essential to the 
safe design of structural concrete members, requiring a 
full knowledge of the effects of torsion and a sound under-
standing of the analytical models that can easily be used 
for design. For over three decades, considerable research 
has been conducted on the behavior of reinforced concrete 
members under pure torsion and torsion combined with other 
loadings. Likewise, analytical models have been developed 
based on the truss model concept. Several of these models 
were developed to predict the full load history of a member, 
whereas others are simplified and used only to calculate 
torsional strength. Many models developed since the 1980s 
account for softening of diagonally cracked concrete.

This report reviews and summarizes the evolution of torsion 
design provisions in ACI 318, followed with a summary of 
the present state of knowledge on torsion for design and 
analysis of structural concrete beam-type members. Despite 
a vast amount of research in torsion, provisions of torsion 
design did not appear in ACI 318 until 1971 (ACI 318-71), 
although ACI 318-63 included a simple clause regarding 
detailing for torsion. Code provisions in 1971 were based 
on Portland Cement Association (PCA) tests (Hsu 1968b).

These provisions were applicable only to rectangular 
nonprestressed concrete members. In 1995, ACI 318-95) 
adopted an approach based on a thin-tube, space truss model 
previously used in the Canadian Standards Association 
(CSA-A23.3-77) code and the Comité Euro-International 
du Béton (CEB)-FIP code (1978). This model permitted 
treatment of sections with arbitrary shape and prestressed 
concrete (Ghoneim and MacGregor 1993; MacGregor and 
Ghoneim 1995). The ACI 318-02 code extended the appli-
cation of the (ACI 318) 1995 torsion provisions to include 
prestressed hollow sections. ACI 318 allows the use of alter-
native design methods for torsional members with a cross 
section aspect ratio of 3 or greater, like the procedures of 
pre-1995 editions of ACI 318 or the Prestressed Concrete 
Institute (PCI) method (Zia and Hsu 1978).

This report reviews and summarizes the present state of 
knowledge on torsion and reviews their use as a framework 
for design and analysis of structural concrete beam-type 
members. Chapter 3 presents a historical background outlining 
the development of research on torsion of structural concrete 
members. The general behavior of reinforced and prestressed 
concrete members under pure torsion is discussed in Chapter 
4. In Chapter 5, the compression field theory (CFT) and soft-
ened truss model (STM) are presented in detail. Chapter 5 
also includes a description of two graphical methods (Rahal 
2000a,b; Leu and Lee 2000). The behavior of members 
subjected to torsion combined with shear, flexure, and axial 
load is discussed in Chapter 6. Chapter 7 introduces addi-
tional design issues related to torsion, such as precast spandrel 
beams, torsion limit design, size effect, open sections, and 
torsional moment distribution. Detailing of torsional members 
is described in Chapter 8. Chapter 9 covers detailed design 
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examples of several beams subjected to torsion using ACI 
318, EC2-04, and CSA-A23.3-04 design equations, and 
additional graphical design methods reported by researchers.

1.2—Scope
Theories presented in this report were developed and veri-

fied for building members of typical size. For application 
to large-scale members, size effects should be considered. 
They could present a serious safety issue when using the 
shear strength equations provided in the design standard, 
which cannot take into account the shear strength reduction 
in large-scale members caused by loss of aggregate interlock 
behavior. Experimental information on large-scale torsional 
members is lacking.

CHAPTER 2—NOTATION AND DEFINITIONS
The material presented is a summary of research carried 

out worldwide and spanning more than four decades, 
making unification of the symbols and notations used by the 
various researchers and design codes a challenge. In some 
cases, mostly for graphs and figures, the notation is kept as 
originally published.

2.1—Notation
a	 =	 moment arm for bending, mm (in.)
ac	 =	 geometric property index
ao	 =	 depth of equivalent rectangular stress block in 

concrete strut of torsional member, mm (in.)
A	 =	 area of yield surface, mm2 (in.2)
Acp	 =	 area enclosed by outside perimeter of concrete 

cross section, mm2 (in.2)
Aℓ	 =	 total area of longitudinal reinforcement to resist 

torsion, mm2 (in.2)
Ao	 =	 gross area enclosed by shear flow path, mm2 (in.2) 

(noted as Atb in Eq. (7.2.6))
Aoh	 =	 area enclosed by centerline of outermost closed 

transverse torsional reinforcement, mm2 (in.2)
Aps	 =	 area of prestressing reinforcement in flexural 

tension zone, mm2 (in.2)
As	 =	 area of nonprestressed longitudinal tension rein-

forcement, mm2 (in.2)
As′	 =	 area of longitudinal compression reinforcement, 

mm2 (in.2)
At	 =	 area of one leg of a closed stirrup resisting torsion 

within spacing s, mm2 (in.2) (noted as Atb in Eq. 
(7.2.6))

b	 =	 width of compression face of member, mm (in.)
bc	 =	 width of stirrups, mm (in.)
B	 =	 integral of Tw

C	 =	 cross-sectional constant to define torsional proper-
ties of a beam

dv	 =	 distance between top and bottom longitudinal rein-
forcement, mm (in.)

D	 =	 cross-sectional depth used in fracture mechanics 
calculations, mm (in.)

D0	 =	 size effect constant for computing sN for plain 
concrete section

D1	 =	 normalized constant to represent characteristic 
structural dimensions used in fracture mechanics 
calculations

Db	 =	 size effect constant for computing sN for reinforced 
concrete section

Dc	 =	 total energy dissipated on discontinuous concrete 
yield surface

Ds	 =	 total energy dissipated by reinforcement
e	 =	 moment arm for torsion, mm (in.)
Ec	 =	 modulus of elasticity of concrete, MPa (psi)
Eps	 =	 modulus of elasticity of prestressed reinforcement 

in flexural tension zone, MPa (psi)
Eps′	 =	 tangential modulus of Ramberg-Osgood curve at 

zero load MPa (psi)
Es	 =	 modulus of elasticity of reinforcement and struc-

tural steel, MPa (psi)
EJw	=	 rigidity of beam under warping torque, N∙m2 (lb-in.2)
fc′	 =	 characteristic concrete cylinder compressive 

strength, MPa (psi)
fc

*	 =	 concrete effective (plastic) compressive stress, 
MPa (psi)

fck	 =	 characteristic compressive strength of concrete, 
MPa (psi); fck = fcm – 8 MPa (fck = fcm –1200 psi)

fcm	 =	 mean compressive strength of concrete, MPa (psi)
fd	 =	 diagonal concrete stress, MPa (psi)
fds	 =	 diagonal concrete stress corresponding to strain eds, 

MPa (psi)
fℓ	 =	 reinforcement stress in ℓ direction, MPa (psi)
fℓp	 =	 prestressing reinforcement stress in the l direction, 

MPa (psi)
fℓy	 =	 specified yield strength of longitudinal reinforce-

ment, MPa (psi)
fp	 =	 stress in prestressing reinforcement; fp becomes fℓp 

or ftp when applied to longitudinal and transverse 
reinforcement, respectively, MPa (psi)

fp0.1	 =	 characteristic yield strength of prestressing rein-
forcing strands, MPa (psi); fp0.1 = 0.9fu

fpc	 =	 compressive stress in concrete due to prestress, 
MPa (psi)

fpk	 =	 characteristic tensile strength of prestressing rein-
forcing strands, MPa (psi); fpk = fpu

fpo	 =	 effective prestress after losses in prestressing rein-
forcement, MPa (psi)

fpu	 =	 specified tensile strength of prestressing reinforce-
ment, MPa (psi)

fp,ud	 =	 design ultimate strength of prestressing reinforcing 
strands, MPa (psi); fp,ud = fpk/gs (gs = 1.15)

fr	 =	 modulus of rupture of concrete, MPa (psi)
ft	 =	 reinforcement stress in t direction, MPa (psi)
ft′	 =	 uniaxial tensile strength of concrete, MPa (psi)
ft

*	 =	 concrete effective (plastic) tensile stress, MPa (psi)
ftp	 =	 prestressing reinforcement stress in t direction, 

MPa (psi)
fty	 =	 specified yield strength of transverse reinforcement, 

MPa (psi)
fy	 =	 specified yield strength of reinforcement, MPa (psi)
fyd	 =	 design yield strength reinforcing steel, MPa (psi); 

fyd = fy/gs (gs = 1.15)
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fyℓ	 =	 yield strength of the torsional longitudinal rein-
forcement, MPa (psi)

fyv	 =	 torsional hoop yield strength reinforcement, MPa 
(psi)

G	 =	 shear modulus, MPa (psi)
h	 =	 overall thickness or height of a member, mm (in.)
Ho	 =	 horizontal force in radial direction, N (lb) (Chapter 7)
Ip	 =	 polar moment of inertia, mm4 (in.4)
k1	 =	 ratio of average stress to peak stress
K	 =	 value from Mohr-Coulomb yield criterion
Kf	 =	 flexural stiffness of floor beams, N∙m2 (lb-in.2)
Kts	 =	 torsional stiffness of spandrel beam, N∙m/rad 

(in.-lb/rad)
ℓ	 =	 span length of beam, mm (in.)
ℓf	 =	 length of flexural beam, mm (in.)
ℓq	 =	 width of shear flow q along top wall (Fig. 4.2(a) 

and (b)), mm (in.)
m	 =	 ratio of effective (plastic) compressive stress to 

effective (plastic) tensile stress of concrete
M	 =	 applied flexural moment at section, N∙m (in.-lb)
Mo	 =	 pure flexural strength of section, N∙m (in.-lb)
n	 =	 integer value
nR	 =	 number of redundants
nV	 =	 coefficient describing an under-reinforced, partially 

under-reinforced, or completely over-reinforced 
section

N	 =	 applied axial load at section, N (lb)
No	 =	 pure axial strength of section, N (lb)
ph	 =	 perimeter of centerline of outermost closed trans-

verse torsional reinforcement, mm (in.)
po	 =	 perimeter of outer concrete cross section, mm (in.) 

(sometimes noted as pcp)
P	 =	 applied concentrated load, N (lb)
q	 =	 shear flow, N/m (lb/in.)
r	 =	 ratio of top-to-bottom yield forces of the longitu-

dinal reinforcement
r	 =	 size effect constant for computing sN

R	 =	 shape parameter used in Ramberg-Osgood
s	 =	 center-to-center spacing of longitudinal and trans-

verse reinforcements, mm (in.)
sl	 =	 center-to-center spacing of longitudinal reinforce-

ment, mm (in.)
st	 =	 center-to-center spacing of transverse reinforce-

ment, mm (in.)
t	 =	 wall thickness of hollow section, mm (in.)
td	 =	 thickness of shear flow zone, mm (in.)
T	 =	 applied torsional moment at section, N∙m (in.-lb)
Tc	 =	 nominal torsional strength provided by concrete, 

N·m (in.-lb)
Tcr	 =	 torsional cracking resistance of cross section, N∙m 

(in.-lb)
Tf	 =	 applied torsional moment, N∙m (in.-lb) (Chapter 9)
Tmax	=	 maximum torsional moment, N∙m (in.-lb) (Chapter 7)
Tn	 =	 nominal torsional moment strength, N∙m (in.-lb)
To	 =	 pure torsional strength of section, N∙m (in.-lb)
Ts	 =	 nominal torsional strength provided by reinforce-

ment, N∙m (in.-lb)
Tu	 =	 factored torsional moment at section, N∙m (in.-lb)

Tw	 =	 warping torsional moment, N∙m (in.-lb)
Txu	 =	 factored balanced torsional strength, N∙m (in.-lb)
Txub	=	 balanced torsional strength, N∙m (in.-lb)

T xub 	=	 nondimensional balanced torsional strength, N∙m 
(in.-lb)

v	 =	 shearing stress due to shear, MPa (psi)
v*	 =	 plastic flow rate (Chapter 7)
vu	 =	 ultimate shear stress, MPa (psi)
V	 =	 applied shear force at section, N (lb)
Vc	 =	 nominal shear strength provided by concrete, N (lb)
Vo	 =	 pure shear strength of section, N (lb)
Vu	 =	 factored shear force at section, N (lb)
w	 =	 ultimate distributed load on helical stair, N/m (lb/ft) 

(Chapter 7)
W	 =	 external work, N/m (lb/ft)
x	 =	 shorter overall dimension of rectangular part of 

cross section, mm (in.)
x1	 =	 distance section centroid and an infinitesimally 

small area of yield surface, mm (in.)
y	 =	 longer overall dimension of rectangular part of 

cross section, mm (in.)
z	 =	 distance along axis of beam, mm (in.)
a, b	=	 Saint-Venant’s coefficients for homogeneous 

torsional section
a*, b*	=	 rotational angles in beam subjected to torsion 

(Chapter 7)
a1	 =	 stress block factor given as ratio of fd to fc′ (Chapter 5)
b	 =	 factor relating effect of longitudinal strain on shear 

strength of concrete (American Association of State 
Highway and Transportation Officials (AASHTO) 
LRFD (general message)

b1	 =	 factor relating depth of equivalent rectangular 
compressive stress block to neutral axis depth; also, 
block factor given as ratio of ao to td (Fig. 4.5)

g1	 =	 angle along helical stair (in plan) at which maximum 
torsional moment is assumed to occur

g2	 =	 angle along helical stair (in plan) at which vertical 
moment is assumed to be zero

gℓt	 =	 shear strain
ed	 =	 strain in d direction
edec	 =	 strain in prestressing reinforcement at decompres-

sion of concrete
eds	 =	 maximum strain at concrete strut surface (Fig. 4.3)
eh	 =	 strain in hoop direction eℓ

eℓy	 =	 yield strain in ℓ direction
eo	 =	 strain at peak compressive stress fc′ in concrete
ep	 =	 peak strain in concrete
er	 =	 strain in r direction
es	 =	 strain in nonprestressed reinforcement; es becomes 

eℓ or et when applied to longitudinal or transverse 
reinforcement, respectively

et	 =	 strain in t direction
ety	 =	 yield strain in t direction
euk	 =	 characteristic total elongation of reinforcing steel at 

ultimate load
ex	 =	 longitudinal strain at midheight of concrete section
z	 =	 softening coefficient of concrete strut
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hℓ	 =	 normalized reinforcement ratio of longitudinal 
reinforcement

hℓb	 =	 balanced normalized reinforcement ratio of longi-
tudinal reinforcement

ht	 =	 normalized reinforcement ratio of transverse steel 
reinforcement

htb	 =	 balanced normalized reinforcement ratio of trans-
verse steel reinforcement

q	 =	 angle between axis of strut, compression diagonal, 
or compression field and tension chord of the 
member; also, the angle between ℓ-t direction/axis 
and d-r direction/axis, radians

x	 =	 coefficient equal to 1 for rectangular sections and 
to p/4 for circular cross sections; x can be taken 
as unity for all shapes of cross sections with only 
negligible loss of accuracy for Ao and po

rℓ	 =	 reinforcement ratio in ℓ direction
rℓp	 =	 prestressing reinforcement ratio in ℓ direction
rt	 =	 reinforcement ratio in t direction
rtp	 =	 prestressing reinforcement ratio in t direction
s	 =	 compressive stress acting in combination with 

torsional moment, psi (MPa)
s0	 =	 nominal torsional strength according to the current 

code specifications based on plastic limit analysis, 
MPa (psi)

sd	 =	 principal stress in d direction for concrete struts, 
MPa (psi)

sℓ	 =	 normal stress in longitudinal direction for reinforced 
concrete, MPa (psi)

smax	=	 maximum principal tensile stress, MPa (psi)
sN	 =	 nominal strength of structure, MPa (psi)
sr	 =	 principal stress in r direction for the concrete struts, 

MPa (psi)
st	 =	 normal stress in the transverse direction for rein-

forced concrete, MPa (psi)
s∞	 =	 strength of plain beams according to elastic analysis 

with maximum stress limited by material strength, 
MPa (psi)

t	 =	 shearing stress due to torsion and shear, MPa (psi)
tmax	=	 maximum shear stress, MPa (psi)
tℓt	 =	 applied shear stress in ℓ-t coordinate for reinforced 

concrete, MPa (psi)
n	 =	 uniform plastic effectiveness factor (Chapter 7)
nc	 =	 plastic effectiveness factor for compression 

(Chapter 7)
nt	 =	 plastic effectiveness factor for tension (Chapter 7)
j	 =	 friction angle
f	 =	 strength reduction factor
fc	 =	 strength reduction factor for concrete (0.65 for 

cast-in-place, 0.70 for precast concrete)
fp	 =	 strength reduction factor for prestressing tendons 

(0.90)
fs	 =	 strength reduction factor for nonprestressed rein-

forcing bars (0.85)
F	 =	 angle of twist in torsional beam, radians/m 

(radians/in.)
F′	 =	 second derivative of rotation with respect to beam’s 

axis z

F′′	 =	 third derivative of rotation with respect to beam’s 
axis z

Y	 =	 bending curvature of concrete strut
wℓ	 =	 reinforcement index in ℓ direction
ws	 =	 functional indicator of an index of reinforcement
wsℓ	 =	 reinforcement ratio index
wt	 =	 reinforcement index in t direction

2.2—Definitions
ACI provides a comprehensive list of definitions through 

an online resource, “ACI Concrete Terminology,” http://
terminology.concrete.org.

CHAPTER 8—DETAILING FOR TORSIONAL 
MEMBERS

8.1—General
Torsional moment in a reinforced concrete member is 

resisted by a circulatory shear flow in a tube along the cross 
section periphery. The tube can be idealized as a space truss 
made up of reinforcement ties and concrete struts, as shown 
in Fig. 3.3.5a. The shear flow induces tensile forces in both 
the hoop reinforcement and longitudinal reinforcement. 
Good reinforcement detailing is required to ensure that the 
hoop and longitudinal reinforcement can develop their yield 
strength to resist circulatory shear flow.

Good detailing demands consideration of the interaction 
between the member longitudinal and transverse reinforce-
ment. Although each member type brings about different 
detailing conditions, the designer should be mindful of this 
overall force interaction in the member. Transverse reinforce-
ment, oriented either horizontally or vertically, should contain 
a longitudinal bar at the corners. Enclosure of the longitudinal 
reinforcement by the transverse reinforcement provides the 
necessary equilibrium at the joint in the three principal direc-
tions, where the three-dimensional force flow is equilibrated.

8.2—Transverse reinforcement
8.2.1 General—Once proportioned for torsion and shear, the 

transverse reinforcement is laid out at a specific longitudinal 
spacing along the member span. The objective of transverse 
reinforcement for torsion and shear is to provide the reinforce-
ment around the perimeter to enclose the member core. Typi-
cally, this reinforcement has a smaller diameter than the longi-
tudinal reinforcement due to spacing, placement, bending, 
and proportioning needs. The transverse reinforcement should 
enclose the perimeter as closely as possible while maintaining 
clear cover requirements. A closed stirrup is imperative for 
torsional detailing. In the simplest case—a basic rectangular 
member cross section—stirrups are provided in a closed rect-
angular shape to encase the rectangular member core. The 
hooks of the closed stirrup are developed into the core with 
135-degree bends. These bends ensure the hooks are well-
anchored to the member core and prevent hook pullout under 
high torsional loads. Figure 8.2.1a provides an example of a 
simple rectangular closed stirrup.

Other common examples of cast-in-place member types 
subject to torsional loads are shown in Fig. 8.2.1b. The key 
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to providing transverse reinforcement in a member subject 
to torsion is to start with the largest rectangular cross section 
and provide a rectangular closed stirrup in that section. Alter-
nately, multiple-leg configurations can also be used for this 
purpose with single or multi-leg pieces or bar layouts to rein-
force the cross section. Any protrusions, apertures, ledges, 
corbels, or other geometric outcroppings are provided with 
supplemental ties or stirrups developed back into the rectan-
gular core of the individual member.

As shown in Fig. 8.2.1c, good detailing usually dictates that 
additional ties or stirrups reinforce any protrusions. These 
ties also have a semi-closed detail with 135-degree or greater 
hooks developed into the core, which is the region enclosed 
by the closed stirrup shape. In addition to the closed stirrups 
and longitudinal bars shown in Fig. 8.2.1b and 8.2.1c, local 
reinforcement in the disturbed regions or D-regions should 
accommodate specific load concentrations. To be effective in 
any size member subjected to torsion, spacing between the 
closed ties should not exceed about one-half of the smallest 
dimension of the member, except for slender precast span-
drel beams, such as those used in parking structures. In these 
members, torsional forces cause out-of-plane bending in the 
web. As described in 7.3, limited testing of such members 
has not shown signs of spalling or stirrup debonding for 
which closed stirrups are required. In load tests, slender 
precast spandrel beams have performed exceptionally well 
without closed ties. The current state of practice on spandrel 
beam behavior is contained in a recent study at North Caro-
lina State University (Lucier et al. 2010).

8.2.2 Hooks and development considerations—Stirrups 
or ties are best terminated with 135- or 180-degree bends. 
Hooks should be developed into the main core of the 
member, where greater confinement is present. This detail 
is important in isolated members, where hook confinement 
is only provided by the member core, and no other external 
geometric conditions provide confinement. Practical consid-
erations might dictate the use of simpler stirrup geometry, 
usually employing 90-degree hooks. When 90-degree hooks 
are used, confinement should be provided at locations where 
a slab frames into the beam side or elsewhere as needed. In 
Fig. 8.2.2a, examples from the ACI Detailing Manual (ACI 
Committee 315 2004) suggest using 90-degrees hooks under 

Fig. 8.2.1a—A typical closed stirrup 
used in a simple rectangular cross 
section.

Fig. 8.2.1b—Examples of transverse torsional detailing in cast-in-place concrete members.
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various side confinement conditions. Examples of poor 
detailing are reproduced in Fig. 8.2.2b. These recommenda-
tions are adopted from the research of Mitchell and Collins 
(1976).

8.3—Longitudinal reinforcement
Longitudinal reinforcement is also proportioned according 

to torsional requirements and provided around the member 
cross section perimeter. In beam regions or B-regions, special 
details need not be provided aside from equal spacing or 

proportioning of the reinforcement around the perimeter. 
Splices are proportioned in accordance with ACI require-
ments. At the end of a cast-in-place member, the perimeter 
longitudinal reinforcement may have to be developed into 
a column or other type of rigid vertical member providing 
torsional restraint.

CSA-A23.3-04 also includes the requirement that “A 
longitudinal reinforcing bar or bonded prestressing tendon 
shall be placed in each corner of closed transverse steel rein-
forcement required for torsion. The nominal diameter of the 

Fig. 8.2.1c—Examples of transverse torsional detailing in precast concrete members.

Fig. 8.2.2a—Recommended two-piece closed single and multiple U-stirrups for members 
subjected to torsion (ACI Committee 315 2004).
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bar or tendon shall not be less than s/16.” The corner bars 
help to support the outward thrusts in the zones between 
the hoops (Mitchell and Collins 1976). Precast concrete 
members usually have semi-rigid connections consisting of 
field-welded angles and plates. Although this is not a full 
torsionally restrained connection, the end region should be 
examined along with subsequent development of the longi-
tudinal, perimeter reinforcement at the member ends. One 
common way of developing reinforcement is to use conven-
tional hooks at the member end. In some cases, the hooks 
might not fit in typically thin precast concrete members. 
Another common detail is the use of U-bars placed hori-
zontally at the member end and lapped with the longitudinal 
reinforcement. The U-bars provide additional end confine-
ment to a given precast member. Likewise, such reinforce-
ment can provide sufficient confinement around the connec-
tion plate studs or tail bar reinforcement.

8.4—Detailing at supports
Precast concrete members require other special detailing 

considerations due to their horizontal support conditions. 
Torsional forces in precast members are often equilibrated 
by out-of-plane, horizontal, or sometimes vertical, reactions 
at discrete locations along the member depth. The member 
end conditions and subsequent details are highly dependent 
on the support configuration.

Figure 8.4 illustrates a common precast spandrel beam 
and the horizontal force couple that is typically developed 
at the end. Additional reinforcement is thereby required at 
the member end near the top to accommodate a potential 
45-degree crack that typically develops at the end location 
due to the couple resisting torsion, as shown in Fig. 8.4(a) 
and 8.4(b). A possible reinforcement scheme to address this 
condition is shown in Fig. 8.4(c) and 8.4(d). Similar condi-

Fig. 8.2.2b—Ineffective closed stirrup types for members subjected to torsion (ACI 
Committee 315 2004).

Fig. 8.4—Support detailing requirements in a precast 
spandrel member, dependent on the support connection 
locations (Raths 1984).
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tions often exist in other precast members due to their specific 
support and horizontal restraint conditions. Although these 
are D-region locations, they are complicated by the three-
dimensional or out-of-plane nature of the problem.

CHAPTER 9—DESIGN EXAMPLES
9.1—Torsion design philosophy

Design philosophy for torsion in the ACI 318-11 building 
code is based on a thin-walled tube, space truss analogy in 
which compression diagonals wrap around the tube and the 
tensile contribution of concrete is neglected. Both solid and 
hollow members are considered tubes in accordance with 
Saint-Venant’s circulatory shear flow pattern both before and 
after cracking. The outer part of the cross section centered 
along the stirrups is assumed to provide torsional resistance. 
The contribution of core concrete cross section is neglected. 
Once a reinforced concrete beam has cracked in torsion, the 
torsional resistance is provided primarily by closed stirrups 
and longitudinal bars located near the member’s surface and 
diagonal compression struts. The inclined angle of the diag-
onal compression struts is permitted to be taken as 45 degrees 
for nonprestressed and lightly prestressed members, and 37.5 
degrees for most prestressed members. Accordingly, ACI 
318-11 makes the specific assumptions in torsion design that:

a) Concrete tensile strength in torsion is neglected
b) Torsion has no effect on the shear strength of concrete
c) Torsion stress determination is based on the closed thin-

walled tube with uniform stress distribution and specific 
thickness, called shear flow

d) The torsional, flexural, and shear strength are accounted 
for by adding longitudinal reinforcement calculated for 
torsion and flexure

e) The longitudinal reinforcement are calculated for 
torsion and shear

The design of torsional resistance in Section 6.3 of 
EC2-04 is also based on a truss model using the thin-walled 
closed section theory with an effective wall thickness. 
The angle between the concrete compression strut and the 
member’s longitudinal axis, q, may be taken between 22 
and 45 degrees. Both the solid and hollow cross section can 
be modeled by an equivalent hollow section neglecting the 
core concrete contribution to calculate the torsional resis-
tance, which is limited by the strength of the concrete struts. 
The longitudinal and transverse reinforcement contributions 
to torsional resistance are accounted for after the thin-wall 
cracks. Effects of combined torsion and shear may be super-
imposed assuming the same value for the strut inclination 
angle. The required longitudinal and transverse reinforce-
ment for torsion should be added to the existing longitudinal 
reinforcement for bending and transverse reinforcement for 
shear, respectively.

The Canadian code (CSA-A23.3-04) provides a General 
Design Method for torsion derived from the modified 
compression field theory (CFT) and represents solid cross 
sections by an equivalent thin-walled tube with a wall thick-
ness determined by cross section dimensions. The space truss 
analogy provides the basic concept for torsion design assuming 
that the tension contribution in concrete is neglected and the 

diagonal compression struts spiraling around the member 
with variable inclined angle that depend on the loading condi-
tion and reinforcement ratio. The bending moment and longi-
tudinal forces due to torsion and shear are considered resis-
tant to four chords, one in each corner of the space truss and 
the shears by the shear flows in the walls. Dimensions of a 
cross section are limited to prevent crushing of the diagonal 
compression struts. In addition to this AASHTO LRFD 
method (general method), CSA-23.3-04 provides a simplified 
method for a restricted group of structural members, which 
states that the inclined angle of diagonal concrete compres-
sion strut is fixed at 35 degrees.

9.2—Torsion design procedures
9.2.1 Torsion design in ACI 318-11—According to Saint-

Venant’s circulatory shear flow pattern, the most efficient 
cross section to resist torsion is tube-shaped. Therefore, 
torsion of a reinforced concrete member is a three-dimen-
sional (3-D) problem because it involves the shear in a 
reinforced concrete two-dimensional (2-D) wall element of 
a hollow tube and the out-of-wall bending of the concrete 
struts. In ACI 318-11, two simplifications are made. First, 
the concrete strut bending is neglected and the amount of 
hoop steel required in the tube determined from Bredt’s 
(1896) equilibrium equation of a cross section

	 qy = Tu/2Ao	 (9.2.1a)

where the symbol qy is the shear flow at yield (N/mm [lb/
in.]); Tu is the torsional moment (N∙mm [in.-lb]); and Ao 
[mm2 (in.2)] is the lever arm area enclosed by the centerline 
of the shear flow.

Second, the hoop and longitudinal steel are assumed to 
yield at ultimate strength. To design steel reinforcement in 
a 2-D shear element, it is possible to use only three equilib-
rium equations (Hsu 1993). Combining the three equations 
creates a simple equation for yield shear flow

	
q A f s A f sy t y t y= ( / )( / )ℓ ℓ 	 (9.2.1b)

where fy is yield stress of hoop steel and longitudinal steel 
(MPa [psi]); At, Aℓ are area of hoop steel and longitudinal 
steel (mm2 [in.2]), respectively; and st, sℓ are spacing of hoop 
steel and longitudinal steel (mm [in.]), respectively. Substi-
tuting the shear flow qy into Bredt’s (1896) equation gives

	
T A A f s A f su t y t l y l= 2 0 ( / )( / ) 	 (9.2.1c)

which is the essence of the ACI code provision.
The lever arm area Ao (mm2 [in.2]) is formed by sweeping 

the lever arm of shear flow one full circle around the axis 
of twist. The centerline of shear flow was taken by Rausch 
(1929) to be the centerline of the hoop steel bar, and the 
corresponding lever arm area is denoted as Aoh (mm2 [in.2]). 
However, this definition of area Aoh was found to overesti-
mate the torsional strength by as much as 30 percent. There-
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fore, the ACI code provides a simple, approximate formula 
for calculating the lever arm area as

	 Ao = 0.85Aoh	 (9.2.1d)

To provide a more accurate formula for the ultimate 
torsional strength, consider the softening of concrete struts 
in the reinforced concrete 2-D wall elements of a tube. Under 
a biaxial tension-compression stress condition, the compres-
sive stress-strain curve of the 2-D elements should be multi-
plied by a softening coefficient. This softening coefficient 
is a function of the principal tensile strain (Zhang and Hsu 
1998) and varies from approximately 0.25 to 0.50. Applying 
this softened stress-strain curve of concrete to the study of 
reinforced concrete tubes under torsion (Hsu 1990, 1993), 
the thickness td (mm [in.]) of the shear flow zone and lever 
arm area can be determined as

	

t T A f

A A T p A f

d u cp c

o cp u cp cp c

= ′

= − ′

4

2

/

( / )
	 (9.2.1e)

where Acp is the area enclosed by the outer boundary of cross 
section (mm2 [in.2]); and pcp is the periphery of the outer 
boundary (mm [in.]). These formulas are given in the ACI 
code commentary, and the background was given in a paper 
by Hsu (1997).

9.2.2 Torsion design in EC2-04—Section 6.3 of EC2-04 
requires a full design procedure for a reinforced concrete 
member under torsion covering both ultimate and service-
ability limit states in cases where the static equilibrium of 
the structure depends on torsional resistance of the elements. 
In conventional statically indeterminate reinforced concrete 
structures, torsion arises from consideration of compat-
ibility and it is normally unnecessary to consider torsion 
at the ultimate limit state. However, even if torsion arises 
from consideration of compatibility only, it may lead to 
excessive cracking in the serviceability limit state. There-
fore, a minimum reinforcement of stirrups and longitudinal 
bars should be provided to prevent excessive cracking, as 
indicated in EC2-04 for cracking control (Section 7.3) and 
detailing beams (Section 9.2).

In normal slab-and-beam or framed structures, specific 
calculations for torsion are usually unnecessary when 
torsional cracking is being adequately controlled by shear 
and minimum flexural reinforcement. Where torsion is 
essential for equilibrium of the structure, EC2-04 should be 
consulted. One example of this is when structure arrange-
ment is such that loads are imposed mainly on one face of a 
beam without corresponding rotational restraints provided.

The design of torsional resistance moment is based on a 
truss model using a thin-walled closed section theory with 
inclined angle q between the concrete compression strut and 
the beam axis. The angle q should be limited and recom-
mended limits are: 1 ≤ cotq ≤ 2.5 (45 degrees ≥ q ≥ 22 
degrees). With a solid section, the section can be modeled 
by an equivalent hollow section from which the torsional 
resistance is calculated. Complex shapes, such as T-sections, 

can be divided into a series of subsections modeled as an 
equivalent thin-walled section, and the total torsional resis-
tance taken as the sum of the capacities of each individual 
element. The effects of combined torsion and shear for both 
hollow and solid members can be superimposed assuming 
the same value for the strut inclination angle q.

A common value for angle q is 45 degrees. Eurocode 8 
(EN 1998-1:2004) determines that: “In the critical regions 
of primary seismic beams, the strut inclination q in the 
truss model shall be 45 degrees” (Paragraph 5.5.3.1.2(2) 
of EC2-08). However, in members not designated to resist 
seismic actions, a reduced value of angle q could be consid-
ered to decrease the required transverse reinforcement and 
required longitudinal reinforcement. This way, fewer stir-
rups and more longitudinal bars could be provided. Required 
torsional reinforcement is added to the required stirrups and 
bars calculated from the shear and flexural design, respec-
tively. Strength of materials used in EC2-04 is based on 
characteristic values and depend on whether the value is 
used for strength or stiffness. The characteristic value used 
to calculate strength corresponds to the 95 percent fractile 
of strength from material tests. The characteristic value for 
stiffness corresponds to mean strength from material tests. 
Design values are based on multiplying the characteristic 
value for resistance by the safety factors a and b.

Design procedure in accordance with EC2-04:
- Step 1: Calculation of the equivalent thin-walled section 

characteristics such as tef, Ak, and uk (also refer to Fig. 6.11 
of EC2-04 for notation)

	 tef = A/u ≥ 2c and, in the case of a hollow section, tef < treal

where
tef	 =	 effective wall thickness of the equivalent thin-

walled section [mm (in.)]
A	 =	 total area of the cross section within the outer 

circumference, including inner hollow areas (for 
example, A = bh in a rectangular cross section with 
width and height equal to b and h, respectively) 
[mm2 (in.2)]

u	 =	 outer circumference of the cross section (for 
example, u = 2(b + h) in a rectangular cross section)

c	 =	 distance between edge and center of the longitu-
dinal reinforcement (centroid cover) [mm (in.)]

treal	 =	 real thickness of a hollow section [mm (in.)]
Ak	 =	 area enclosed by the centerlines of connecting 

walls, including inner hollow areas (for example, 
Ak = (b – tef)(h – tef) in a rectangular cross section) 
[mm2 (in.2)]

uk	 =	 perimeter of the area Ak (for example, uk = 2(b + 
h – 2tef) in a rectangular cross section)

- Step 2: Assume the value of angle of compression struts, 
q, based on the expression: 1 ≤ cotq ≤ 2.5 (45 degrees ≥ q ≥ 
22 degrees). For combined shear and torsion, the same value 
of q should be assumed and the common value is 45 degrees.

- Step 3: Check the maximum resistance of the member 
subjected to torsion and shear. This is limited by the strength 
of the concrete struts. If the following relationship is not 
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satisfied, the member cross section dimensions, the concrete 
compressive strength, or both, should be increased

	

T

T

V

V
Ed Ed

Rd.max Rd.max

+ ≤ 1 	 (9.2.2a)

where
TEd	 =	 design torsional moment [N∙m (in.-lb)]
TRd.max =	design torsional resistance moment according to 

the following relationship [N∙m (in.-lb)]

	 TRd,max = 2vacwfcdAktefsinqcosq	 (9.2.2b)

VEd	 =	 design shear force [N (lb)]
VRd.max = maximum design shear resistance according to the 

following relationship [N∙m (in.-lb)]

	
V

b zvf
Rd

c w cd
, cot tanmax =

+( )
α

θ θ
	 (9.2.2c)

bw	 =	 width of the web of the cross section [mm (in.)]
z	 =	 inner lever arm, for a member with constant depth, 

corresponding to the bending moment in the element 
under consideration. In the shear analysis of rein-
forced concrete without axial force, the approximate 
value z = 0.9d may normally be used (d is the effec-
tive depth of the cross section) [mm (in.)]

v	 =	 strength reduction factor for concrete cracked in 
shear, recommended values (values for use in a 
country may be found in its National Annex):

	

v f f

v f f
ck ck

ck y

= −
= −

0 6 1 250

0 6 1 36 26

. ( / ) [

. ( / . ) [

  in MPa]

  in ksi]]
	 (9.2.2d)

acw	 =	 coefficient taking into account the state of compres-
sive stress

α
σ σ

σcw

cp cd cp cd

cd cp

f f

f
=

+ < ≤

< ≤

1

1 0 0 25

1 25 0 25

non-prestressed

/ .

. . 00 5

2 5 1 0 5

.

. ( / ) .

f

f f f

cd

cp cd cd cp cd− < ≤




















σ σ

	 (9.2.2e)

scp	 =	 mean compressive concrete stress due to design 
axial force (measured positive) [MPa (psi)]

fck	 =	 characteristic compressive concrete strength [MPa 
(psi)]

fcd	 =	 design compressive concrete strength (= fck/gc, 
where gc is the partial factor for concrete equal to 
1.5 for ultimate limit state and persistent and tran-
sient design situations) [MPa (psi)]

- Step 4: Calculation of the required cross-sectional area 
of the longitudinal reinforcement for torsion, SAsℓ:

	

A
T u

A fs
Ed k

k y d
ℓ

ℓ

∑ =
cot θ

2 	 (9.2.2f)

where fyℓd is the design yield stress of the longitudinal rein-
forcement [MPa (psi)].

Notes: The longitudinal reinforcement for torsion should 
be added to the required longitudinal reinforcement for 
flexure. The longitudinal reinforcement should generally be 
distributed over the length of side, zi, (zi is the side length of 
wall i defined by the distance between intersection points 
with the adjacent walls [refer to Fig. 6.11 of EC2-04]), but 
for smaller sections it may be concentrated at the ends of this 
length. According to EC2-04 provisions (Section 9.2.3(4)), 
longitudinal bars for torsion should be arranged such that 
there is at least one bar at each corner, with the others being 
distributed uniformly around the inner periphery of the links, 
with a spacing not greater than 350 mm (14 in.).

- Step 5: Calculation of the required cross-sectional area 
of the transversal reinforcement for torsion

	

A

s

T

A f
sw Ed

k ywd

=
2 cot θ 	 (9.2.2g)

where
Asw	 =	 cross-sectional area of the transversal reinforce-

ment (stirrups) [mm2 (in.2)]
s	 =	 spacing of the stirrups [mm (in.)]
fywd	 =	 design yield stress of transversal reinforcement 

[MPa (psi)]
Notes: The transversal reinforcement for torsion should 

be added to the existing transverse reinforcement for shear. 
The torsion links (stirrups) should be closed and anchored 
by means of laps or hooked ends and form an angle of 90 
degrees with the axis of the structural element. Refer to Fig. 
9.6 of EC2-04 for recommended shapes. According to provi-
sions of EC2-04 (Section 9.2.3(3)), longitudinal spacing of 
the torsion stirrups should not exceed u/8, or the require-
ments about the maximum longitudinal spacing between 
shear assemblies (Section 9.2.2(6) of EC2-04) or the lesser 
dimension of the beam cross section.

- Step 6: Check the value of the angle of compression 
struts, q, based on the calculated and provided longitudinal 
and transversal reinforcement from Steps 4 and 5

	

θcalc

sw k ywd

sl y d

A u f

s A f
=

∑
−tan 1

ℓ
	 (9.2.2h)

Note: In case of a significant difference between the calcu-
lated and the initially assumed angle of compression struts, 
reassume the angle q (Step 2) and recalculate Step 3 through 6.

9.2.3 Torsion design in CSA-A23.3-04—The Canadian 
code stipulates that the effect of torsion should be considered 
in design only if the torsion due to factored loads, Tf [N∙m 
(in.-lb)], exceeds 0.25Tcr. The cracking torque Tcr [N∙m (in.-
lb)] is assumed to be reached when the principal tensile stress 
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fl [MPa (psi)] (equivalent to the shear stress v in pure torsion) 
equals the factored tensile strength of the concrete, fcr [MPa 
(psi)]. For the calculation of Tcr, the following assumptions 
are made:

- Solid cross sections are represented by an equivalent 
thin-walled tube with a wall thickness [mm (in.)]

	 tc = 0.75Ac/pc	 (9.2.3a)

- Bredt’s classical equation for tubular section applies 
[MPa (psi)]

	 v = Tf/(2Aotc)	 (9.2.3b)

- Area enclosed by shear flow path [mm2 (in.2)]

	 Ao = 2/3Ac	 (9.2.3c)

- Factored design tensile strength for normal concrete 
[MPa (psi)]

	

f f f

f f f

cr c c c

cr c c c

= ′ ′

= ′ ′

0 38

0 38 12

. [ ]

.

φ

φ

 in MPa

 [ in psi]

 

 	 (9.2.3d)

For non-prestressed concrete members, this results in the 
following expression

	

T A p f f

T A p f

cr c c c c c

cr c c c c

= ′ ′

= ′ ′

( / ) . [ ]

( / ) .

0 38

0 38 12

φ

φ

  in MPa

 [ffc  in psi]
	 (9.2.3e)

The symbols not defined in the above equations are as 
follows:
Ac	 =	 area enclosed by outside perimeter pc of concrete 

section [mm2 (in.2)]
fc′	 =	 specified compressive strength of concrete
fc	 =	 resistance factor for concrete (= 0.65)

If torsion is not negligible (Tf > Tcr), torsion reinforcement 
should be provided. The General Design Method (CSA-
A23.3-04) for torsion was derived from the MCFT, which 
represents a holistic approach for both shear and torsion 
design. For torsion, the basic concept is the space truss 
analogy, originally envisioned by Rausch (1929), assuming 
a 45-degree angle for the compression struts. This AASHTO 
LRFD (general method), originally developed for shear, 
requires a longitudinal strain indicator ex and the level of 
normalized shear stress vu/fc′ to estimate q and b. In the case 
of a member subjected to pure torsion, it is not necessary to 
consider b. For torsion, the General Design Method (CSA-
A23.3-04) assumes that:

a) Concrete in the cracked member carries no tension
b) The angle q of the diagonal compression struts spiraling 

around the member is variable and depends on longitudinal 
strain at mid-depth of section, ex

The longitudinal strain ex is affected by the bending 
moment: shear, torsion, and if present, by axial load and 
prestressing in the member. In the presence of bending 

moment, shear, and torsion, the strain at mid-depth of the 
section, ex, is computed from the expression

εx f f h f o s sM d V p T A E A= + +( / [ . / ] ) / ( )2 20 9 2 2 	 (9.2.3f)

where
Mf	 =	 moment due to factored loads [N∙m (in.-lb)]
Vf	 =	 shear force due to factored loads [N (lb)]
ph	 =	 perimeter of the centerline of the closed transverse 

reinforcement [mm (in.)]
Es	 =	 modulus of elasticity of the reinforcement [MPa (psi)]
As	 =	 area of flexural reinforcement on the flexural 

tension side of the member [mm2 (in.2)]
q	 =	 29 + 7000ex (degrees)

For a given angle q, the transverse reinforcement to resist the 
factored torque Tf is derived from equilibrium and given by

	

A
T s

A ft

f

o s y

=
2 φ θcot

	 (9.2.3g)

where
s	 =	 spacing of transverse reinforcement measured 

parallel to the axis of the member [mm (in.)]
fs	 =	 resistance factor for non-prestressed reinforcing bars
fy	 =	 specified yield strength of transverse reinforcement 

[MPa (psi)]
Additional longitudinal reinforcement is required to resist 

the longitudinal forces generated by torsion. As usual, the 
transverse reinforcement due to torsion should be added to 
the shear reinforcement.

Dimensions of the cross section of the member have to 
be such that crushing of the diagonal compression struts is 
prevented. This is achieved if the combined stress due to shear 
and torsion does not exceed 25 percent of the factored compres-
sive strength of the concrete. This is expressed by Eq. (9.2.3h)

	

V

b d

T p

A
ff

w v

f h

oh
c c+ ≤ ′

1.7
0.25

2
φ 	 (9.2.3h)

9.2.4 A comparison of torsion design procedures for ACI, 
EC2, and CSA—The design philosophy and procedures for 
pure torsion and combined loads including bending, shear, 
and torsion are discussed previously according to ACI 
318-11, EC2-04, and CSA-A23.3-04. All the design proce-
dure and equation citations from these codes are summa-
rized and compared in Table 9.2.4.

9.3—Introduction to design examples
Two examples were selected to illustrate the steps 

involved in torsion design: 1) a solid reinforced concrete 
rectangular beam under pure torsion; and 2) A prestressed 
box girder under combined loading including torsion. 
Although this report focuses on recent torsion developments 
and theories, the design examples are solved by three major 
building codes: ACI 318-11, Eurocode 2, and CSA-A23.3-
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04. Example 1 was also solved by the two graphical methods 
proposed by Rahal (2000b) and Leu and Lee (2000). These 
graphical methods are not suitable to treat prestressed 
concrete sections under combined loads and, therefore, were 
not used for Example 2. Following each design example, a 
comparison table summarizes results of the various codes 
and methods. Design equations and expressions may vary 
slightly from one code to another, but the general design 
procedure is the same. In the case of torsion combined with 
shear, design procedures for all three codes follow the flow 
chart given in Fig. 9.3. Hsu (1997) provides background 
on ACI 318-95 that is still applicable to the updated ACI 
318-11. His paper includes a detailed design example of a 
prestressed hollow box girder subjected to torsion, shear, 
and flexure that constitutes Example 2.

9.4—Design Example 1: solid rectangular 
reinforced concrete beam under pure torsion

9.4.1 Design problem statement—As shown in Fig. 9.4.1, 
the cross-sectional dimensions of beam are bw = 300 mm 
(12 in.) and h = 500 mm (20 in.). The characteristic concrete 
cylinder compressive strength is fc′ = 20 MPa (2900 psi) 
[Class C20/25], and the characteristic steel yield strength is 
fy = 420 MPa (60,000 psi). The applied torsional moment is 
Tu = 30 kN·m (266 in.-kip). The mean cylinder strength of 
the concrete: fcm = fc′ + 8 MPa ⇒ fcm = 28 MPa (4000 psi). 
Assume 40 mm (1.5 in.) from exterior face to stirrup center-
line typical.

9.4.2 Solution according to ACI 318-11
1. Determine if torsion effects may be disregarded (ACI 

318-11, Section 11.5.1).
The torsion effects can be disregarded if the following 

expression is valid

Fig. 9.3—Design process flow chart for combined shear and torsion effects.
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where
f	 =	 strength reduction factor for torsion and shear = 0.75
l	 =	 modification factor of lightweight concrete 

(normalweight concrete, l = 1.0)
pcp	 =	 perimeter of outer concrete cross section, mm (in.) 

= 2 × (bw + h) = 1600 mm (64.0 in.)
Acp	 =	 total area enclosed by the outside perimeter of 

concrete cross section, mm (in.) = bw × h = 150,000 
mm2 (240 in.2)

Therefore, 
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= 3.93 kN·m (36.3 in.-kip)
Tu = 30.0 kN·m (266 in.-kip).

Torsion effects must be considered.
2. Determine if dimensions of the cross section are 

adequate (ACI 318-11, Section 11.5.3.1).
Dimensions of the cross section are adequate if
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In case of pure torsion, the expression becomes
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where
ph	 =	 perimeter of centerline of outermost closed trans-

verse torsional reinforcement, mm (in.)

ph	 =	 2(xo + yo) = 1280 mm (50.4 in.)
xo, yo	 =	 horizontal and vertical dimension of the centerline 

of outermost closed transverse torsional reinforce-
ment, respectively

xo	 =	 (300 – 2 × 40) = 220 mm (9 in.)
yo	 =	 (500 – 2 × 40) = 420 mm (17 in.)
Aoh	 =	 area enclosed by centerline of outermost closed 

transverse torsional reinforcement, mm (in.)
Aoh	 =	 xoyo = 92,400 mm2 (153 in.2)

Therefore
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A
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×

 = 2.65 MPa (347.6 psi)

whereas
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6
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fc .  2.80 MPa (403 psi)

Because the expression in Eq. (11-18) (ACI 318-11) is 
valid, the cross section dimensions are adequate.

3. Calculate the amount of stirrups required for pure 
torsion (ACI 318-11, Section 11.5.3.3).

To calculate transverse reinforcement for torsion, Eq. 
(11-20) and (11-21) in ACI 318 can be transformed into
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where
At	 =	 area of one leg of a closed stirrup resisting torsion
s	 =	 spacing of the stirrups
fyt	 =	 design strength of torsion transverse reinforcement 

= 420 MPa (60,000 psi)
Ao	 =	 gross area enclosed by shear flow path = 0.85Aoh

q	 =	 angle of compression diagonals in truss analogy for 
torsion = 45 degrees

Therefore,
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	 = 0.61 mm2/mm (0.0227 in.2/in.)

The minimum transverse reinforcement is computed by 
Eq. (11-23) in ACI 318.

In the case of pure torsion, this minimum is expressed by
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	 = 0.1 mm2/mm (0.0040 in.2/in.)

but shall not be less than

Fig. 9.4.1—Rectangular 
reinforced concrete 
cross section subjected 
to pure torsion.

American Concrete Institute Copyrighted Material—www.concrete.org

18	 REPORT ON TORSION IN STRUCTURAL CONCRETE (ACI 445.1R-12)



	

A
s

b
f

t

min

w

yv







= =
×0 35

2

0 175 300

420

. .

 
	 = 0.125 mm2/mm (0.005 in.2/in.)

The maximum spacing of the stirrups is given by (ACI 
318-11, Section 11.5.6.1)

	
s
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
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min
/ 8

300 mm
 = 160 mm (6.50 in.)

For stirrups ∅8 (ds = 8.0 mm [0.315 in.]), At = 50.3 mm2 
(0.078 in.2) and s ≤ 81 mm (3.20 in.). Select: s = 80 mm 
(3.15 in.).

For stirrups No. 3 (ds = 9.5 mm (0.375 in.)), At = 71.0 mm2 
(0.11 in.2) and s ≤ 115 mm (4.55 in.). Select: s = 110 mm 
(4.50 in.).

4. Calculate the longitudinal bars required for pure torsion 
(ACI 318-11, Section 11.5.3.7).

Total longitudinal reinforcement for torsion (Al) (Eq. 
(11-22) in ACI 318) is calculated by
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	 = 780.8 mm2 (1.18 in.2)

Minimum longitudinal reinforcement (Eq. (11-24) in ACI 
318) is calculated by
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Therefore, Aℓ = 780.8 mm2 (1.18 in.2)
At least one longitudinal bar is required in each stirrup’s 

corner and bar spacing distributed around the perimeter of the 
closed stirrups is 305 mm (12 in.). Therefore, the number of 
longitudinal bars is at least six and each bar requires780.8/6 
= 130 mm2 (0.20 in.2).

For six longitudinal bars ∅14 (ds = 14.0 mm [0.551 in.]), 
Aℓ = 6 × 153.9 = 923 mm2 (1.43 in.2).

For six longitudinal bars No. 5 (ds = 15.9 mm [0.625 in.]), 
Aℓ = 6 × 200 = 1200 mm2 (1.86 in.2).

9.4.3 Solution according to EC2-04 code
1. Calculate the terms of the equivalent thin-walled section 

(EC2-04, Section 6.3.2(1)).
Effective wall thickness is calculated by

	
t
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/
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	 ⇒ tef = 100 mm (4.0 in.)

where
A = total area of the outside perimeter of the concrete cross 
section

=  bwh = 300 × 500 = 150,000 mm2 (240 in.2)
pc = outside perimeter of the concrete cross section
= 2(bw + h) = 2(300 + 500) = 1600 mm (64.0 in.)
cℓ = distance between edge of member and center of the 
longitudinal reinforcement
= 50 mm (2.0 in.)

The area enclosed by the centerlines of the connecting 
thin-walls is calculated by

Ak = (bw – tef)(h – tef) = 200 × 400 = 80,000 mm2 (124.0 in.2)

The perimeter of the area enclosed by the centerlines of 
the connecting thin-walls is determined by

	
u b t h tk w ef ef= −( ) + −( ) 2  = 2(200 + 400)

 
	 = 1200 mm (48.0 in.)

2. Determine if dimensions of the cross section are 
adequate (evaluate the strength of concrete struts) (EC2-04, 
Section 6.3.2(4)).

Dimensions of the cross section are adequate if (Eq. (6-29) 
in EC2-04)
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V
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max Rd,max
max+ ≤  → <=1 pure torsion

where
TEd	 =	 design torsional moment = Tu

VEd	 =	 design shear force = Vu

TRd, max =	design torsional resistance moment
VRd, max =	design shear resistance force

The design torsional resistance moment is given as (Eq. 
(6-30) in EC2-04)

	
T v f A tRd c cd k ef, sin cosmax = 2 α θ θ

where
v	 = 	 strength reduction factor for concrete cracked in 

shear
	 =	 0.6(1 – fc′/250) = 0.6(1 – 20/250) = 0.552 (fc′ in MPa)
ac	 =	 1 (for non-prestressed elements)
q	 =	 angle of compression diagonals in truss analogy for 

torsion
1 ≤ cotq ≤ 2.5; assume q = 35 degrees
fcd	 =	 design compressive strength of concrete
	 =	 fck/gc = 20/1.5 = 13.3 MPa (1933 psi)

Therefore,
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=
⇒ =

−

55.2 kN•m (513.4 in.-kip)

 55.2TRd  max   kN•m (513.4 in.-kip) >  30 kN•m (266 in.-kip)Tu =

Because the above expression is valid, dimensions of the 
cross section are adequate.
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3. Calculate the amount of stirrups required for pure 
torsion (EC2-04, Section 6.3.2 (2)).

The amount of stirrups required is calculated using the 
equation
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≥
2 cot θ

where
At	 =	 area of one leg of a closed stirrup resisting torsion
s	 =	 spacing of the stirrups
fywd	 =	 design strength of transverse reinforcement
	 =	 fty/gs = 420/1.15 = 365.2 MPa (52,174 psi)

Therefore,
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	 = 0.359 mm2/mm (0.014 in.2/in.)
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A

s
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The ratio of the required transverse reinforcement is given 
by
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where a is angle between the stirrups and longitudinal axis.
The ratio of the minimum stirrups is (Eq. (9.5N) in EC2-04)

	
ρt c ykf f= ′( ) = =0 08 0 08 20 420 0 00085. / . / .

The maximum longitudinal spacing of the stirrups is given 
as (Eq. (9.6N) and Section 9.2.3(3) in EC2-04).
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 = 200 mm (8.0 in.)

For stirrups ∅8 (ds = 8.0 mm [0.315 in.]), At = 50.3 mm2 
(0.078 in.2) and s ≤ 137 mm (5.40 in.). Select: s = 125 mm 
(5.0 in.).

For stirrups No. 3 (ds = 9.5 mm [0.375 in.]), At = 71 mm2 
(0.110 in.2) and s ≤ 194 mm (7.66 in.). Select: s = 180 mm 
(7.1 in.).

4. Calculate the longitudinal bars required for pure torsion 
(EC2-04, Section 6.3.2(3)).

The total longitudinal reinforcement needed for torsion 
(SAl) is given as (Eq. (6-28) in EC2-04)
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	 ≥ 880 mm2 (1.37 in.2)

Minimum longitudinal reinforcement is determined by 
(Eq. (9.1N) in EC2-04)
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where
fctm	 =	 mean tension strength of concrete
	 =	 0.30fck

2/3 = 0.3(202/3) = 2.21 MPa (319 psi)
bw	 =	 mean width of tension zone = 300 mm (12 in.)

Therefore,
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	 = 185 mm2 (0.287 in.2)

Longitudinal bars are arranged with at least one bar at each 
corner of the stirrups and the others distributed uniformly 
around the inner periphery of the torsion links (closed stir-
rups) with a maximum spacing of 350 mm (13.8 in.). There-
fore, the number of longitudinal bars is at least six and each 
bar requires 880/6 = 147 mm2 (0.23 in.2).

For six longitudinal bars ∅14 (ds = 14 mm [0.55 in.]), Aℓ  
= 6 × 154 = 924 mm2 (1.43 in.2).

For six longitudinal bars No. 5 (ds = 15.8 mm [0.625 in.]), 
Aℓ = 6 × 198 = 762 mm2 (1.88 in.2).

9.4.4 Solution according to CSA-A23.3-04 code
1. Determine if torsion effects may be disregarded (CSA-

A23.3-04, Section 11.2.9.1).
If the magnitude of the torsion, Tf, satisfies the following 

expressions (Eq. (11-2) in CSA-A23.3-04), torsional effects 
need not be considered

	 Tf < 0.25Tcr
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	 = 15.5 kN·m (144 in.-kip)

where
Ac	 =	 Acp = 150,000 mm2 (240 in.2)
pc	 =	 pcp = outside perimeter of concrete cross section = 

1600 mm (64.0 in.)
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l	 =	 factor to account for low-density concrete
	 =	 1.0fc = resistance factor for concrete = 0.65
fc′	 =	 specified compressive strength of concrete, which 

is the same as the characteristic concrete cylinder 
compressive strength in previous definition = 20 
MPa (2.9 ksi)

Therefore,

	 Tf (= 30.0 kN·m) > 0.25Tcr (= 0.25 × 15.5 = 3.9 kN·m)

Torsion effect, therefore, must be considered.
2. Determine if dimensions of the cross section are 

adequate (CSA-A23.3-04, Section 11.3.10.4).
Dimensions of the cross section are adequate if the equa-

tion below (Eq. (11-19) in CSA-A23.3-04) is satisfied
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In case of pure torsion, the expression is simplified to
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A
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c c1 7
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With a concrete cover of 40 mm (1-1/2 in.) and 10M (No. 
3) stirrups (diameter 12 mm [1/2 in.]), the following calcula-
tions/values apply

Aoh = (300 – 2 × 46)(500 – 2 × 46) = 84,864 mm2 (141.0 in.2)

ph = 2[(300 – 2 × 46) + (500 – 2 × 46)] = 1232 mm (50.0 in.2)

Therefore,

	

T p

A
u h

oh1 7

30 10 1232

1 7 84 8602

6

2. . ,
=

× ×
×

 = 3.02 MPa (394 psi)

	 0 25 0 25 0 65 20. . .f fc ′ = × ×c  = 3.25 MPa (471 psi)

Because 3.02 MPa < 3.25 MPa, dimensions of the cross 
section are adequate.

3. Calculate the stirrups required for pure torsion (CSA-
A23.3-04, Section 11.3.10.3);

The equation of nominal torsional strength Tn is same in 
all codes except for differences in strength reduction factors. 
For design, the equation for Tn is rearranged to express the 
required area of transverse reinforcement per unit length 
(Eq. (11-7) in CSA-A23.3-04)
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where

At	 =	 area of one leg of a closed stirrup resisting torsion
s	 =	 spacing of the stirrups
Ao	 =	 gross area enclosed by shear flow path = 0.85Aoh

q	 =	 angle of inclination of compression stresses to the 
longitudinal member axis

4. Calculate angle of inclination of compression strut 
(CSA-A23.3-04, Section 11.3.6.4).

The angle of inclination of the diagonal compression strut 
is given by the expression (Eq. (11-12) in CSA-A23.3-04)

	 q = 29 + 7000ex

The longitudinal strain indicator ex is defined by (Eq. 
(11-13) in CSA-A23.3-04)
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For non-prestressed sections subjected to pure torsion, the 
expression for ex is simplified to
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with Ao = 0.85Aoh = 0.85 × 84,860 = 72,130 mm2 (120 in.2) 
and the longitudinal reinforcement As = 413 mm2 (0.64 in.2) 
(established in Section 6 of this example), the following is 
obtained
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0 00140
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, ,
.

Therefore

	 q = 29 + 7000 × 0.00140 = 38.8 degrees

5. Calculate stirrups required for pure torsion.
The required stirrup area per unit length is calculated 

using the equation (Eq. (11-17) in CSA-A23.3-04)
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	 = 0.468 mm2/mm (0.0175 in.2/in.)

The minimum transverse reinforcement is (Eq. (11-1) in 
CSA-A23.3-04)
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	 = 0.192 mm2/mm (0.00775 in.2/in.)
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The maximum spacing of the stirrups is (CSA-A23.3-04, 
Section 11.3.8.1)

	
s
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
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min
.0 7

600 mm
 = 277 mm (11.2 in.)

where
dv	 =	 effective shear depth = max(0.9d, 0.72h) = max(396 

mm, 360 mm) [(16.0 in., 14.4 in.)]
For stirrups 10M (ds = 11.3 mm [0.444 in.]), At = 100 mm2 

(0.155 in.2) → s ≤ 210 mm (8.32 in.). Select s = 200 mm 
(8.0 in.).

For stirrups No. 3 (ds = 9.5 mm [0.375 in.]), 71.0 mm2 (At 
= 0.110 in.2) → s ≤ 150 mm (5.89 in.). Select: s = 150 mm 
(5. 9 in.).

6. Calculate the amount of longitudinal bars required for 
pure torsion (CSA-A23.3-04, Section 11.3.9.2 and 11.3.10.6).

Total longitudinal reinforcement is calculated using the 
following equation (Eq. (11-21) and (11-14) in CSA-A23.3-04)
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where
Fℓt = required tension force in longitudinal reinforcement = 
fAlfy

Therefore
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	 = 402 mm2 (0.61 in.2)

One longitudinal reinforcing bar should be placed in each 
corner of the closed transverse reinforcement required for 
torsion. The nominal diameter of the corner bars should be 
no less than s/16. If 10M stirrups are used, the bar nominal 
diameter can be no less than 200/16 = 12.5 mm (8/16 = 0.5 
in.), and for No. 3: 150/16 = 9.38 mm (6/16 = 0.375 in.).

Select: four longitudinal bars 15M (ds = 16.0 mm [0.628 
in.]) at the corners and two 10M bars at mid-depth: Aℓ = 4 × 
200 + 2 × 100 = 1000 mm2 (1.55 in.2).

Or, six longitudinal bars No. 3 (ds = 9.5 mm [0.375 in.]), 
Aℓ = 6 × 71 = 426 mm2 (0.66 in.2)

Or, six longitudinal bars No. 4 (ds = 12.7 mm [0.50 in.]), 
Aℓ = 6 × 127 = 762 mm2 (1.18 in.2).

9.4.5 Rahal’s graphical method—Rahal’s graphical 
method uses the ACI general requirements, such as an upper 
limit on spacing of transverse and longitudinal reinforce-
ment, an upper limit on yield strength of reinforcing rebars, 
and a minimum of four corner longitudinal bars. Based on 
ACI requirements, it also disregards the torque effect if it 
is smaller than 25 percent of the cracking torque. The cross 
section outer perimeter and area enclosed within this perim-
eter were calculated in the ACI design example 9.4.1 as: Ac = 
150,000 mm2 (240 in.2) and pc = 1600 mm (64.0 in.).

1. Determine if torsion effects may be disregarded.
The torsion effects can be disregarded if this expression is 

valid: Tu ≤ 0.25fTcr

	
T f
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	 = 20. 6 kN·m (193.87 in.-kip)

The torque is disregarded if Tu = 30 kN·m (266 in.-kip) is 
smaller than 0.25fTcr = 0.25 × 0.75 × 20.6 = 3.9 kN·m (35.8 
in.-kip). Torsion effects, therefore, must be considered.

2. Calculate normalized shear stress and determine if size 
of cross section is adequate.

Shear stress in the walls of the cross section is calculated by
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The normalized shear stress fits well within Region I in 
Fig. 5.7.1. Therefore, the section can be designed as under-
reinforced, and the section dimensions are adequate.

3. Calculate the required reinforcement.
The most straightforward design of an under-reinforced 

section uses equal amounts of longitudinal and transverse 
reinforcement indexes (wℓ = wt = v/fc′). Therefore, wℓ = 0.212 
and wt = 0.212. From Eq. (5.7.1b) and (5.7.1c), the longitu-
dinal and transverse reinforcement are

	

A

s

A f

f p
t c c

ty c
t=

′
=

0 42 0 42 150 000 20

420 1600
0 212

. ( . )( , )( )

( )( )
.ω

 
	 = 0.40 mm2/mm (0.016 in.2/in.)
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	 = 568 mm2 (0.92 in.2)

The stirrups’ maximum spacing is taken as 160.0 mm (6.30 
in.), which is the smaller of ph/8 = 2(220 + 420)/8 = 160.0 mm 
(6.50 in.) and 300.0 mm (12.0 in.), as per ACI code.

For stirrups ∅8 (ds = 8.0 mm [0.315 in.]), At = 50.3 mm2 
(0.08 in.2), the maximum spacing is calculated as s ≤ 124.5 
mm (4.9 in.), and it can be used: s = 120 mm (4.50 in.).

For stirrups No. 3 (ds = 9.5 mm [0.375 in.]), At = 71.0 mm2 
(0.11 in.2), the maximum spacing is calculated as s ≤ 175.7 
mm (6.9 in.), and it can be used: s = 160 mm (6.50 in.).

To provide four longitudinal corner bars and limit the spacing 
to 300 mm (12 in.), six bars are needed (ACI design in 8.2.2). 
The minimum bar area is of 578/6 = 96 mm2 (0.15 in.2).

For six longitudinal bars ∅12 (ds = 12.0 mm [0.472 in.]), 
Aℓ = 6 × 113 = 678 mm2 (1.05 in.2).

For six longitudinal bars No. 4 (ds = 12.7 mm [0.50 in.]), 
Aℓ = 6 × 129 = 774 mm2 (1.20 in.2).

9.4.6 Leu and Lee’s graphical method
1. Calculate the required torsional strength.
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Nondimensional balanced torsional strength is calculated 
using Eq. (5.7.2g)
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Balanced torsional strength Txub is determined by Eq. 
(5.7.2h)
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	 = 55.1 kN·m (512 in.-kip)

where
Ac	 =	 total area of the outside perimeter of the concrete 

cross section
	 =	 bwh = 300 × 500 = 150,000 mm2 (240 in.2)
pc	 =	 outside perimeter of the concrete cross section
	 =	 2(bw + h) = 2(300 + 500) = 1600 mm (64.0 in.)

The torsional strength indicated by Eq. (5.7.2h) is greater 
than required
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.
 → fs ≥ 0.73w

where
Tu	 =	 applied torsional moment = 30.0 kN·m (266 in.-kip)
f	 =	 strength reduction factor for shear and torsion; 

which is assumed to be the same as that in ACI 318
	 =	 0.75ws = strength contour value (Fig. 5.7.2)

2. Calculate the longitudinal bars and stirrups required for 
pure torsion.

Required reinforcement indexes (Fig. 5.7.2): wℓ and wt

For convenience, assume wℓ = wt.
Referring to (Fig. 5.7.2), ws ≥ 0.73 → wℓ = wt ≥ 0.70.
Balanced normalized reinforcement ratios hℓb and htb are 

calculated by Eq. (5.7.2c) and (5.7.2d)

	

ηℓb
yf

=
+

76

200
 (fy in MPa)

 
=

+
=

76

200 420
0 125.

	

ηtb
yf

=
+

76

100
 (fy in MPa)

 
=

+
=

76

100 420
0 135.

Required normalized reinforcement ratios hℓ and ht are 
determined using Eq. (5.7.2e) and (5.7.2f)

	 η ω ηℓ ℓ ℓ= ≥ ×b 0 70 0 125. .  → ηℓ ≥ 0 0861.

	 η ω ηt t tb= ≥ ×0 70 0 135. .  → ηt ≥ 0 105.

Required longitudinal bars are calculated with Eq. (5.7.2a)
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f

f

A

A
y

c cp′
≥ℓ 0 0868.  → 

420

20 150 000
0 0861

Aℓ

,
.≥

 
	 → Aℓ ≥ 615 mm2 (1.0 in.2)

At least one longitudinal bar is placed at each corner of 
the stirrups with the others distributed uniformly around 
the inner periphery of the closed stirrups with a maximum 
spacing of 300 mm (12 in.), as indicated in ACI 318. There-
fore, the number of longitudinal bars is at least six and each 
bar requires 615/6 = 102.5 mm2 (0.17 in.2).

For six longitudinal bars ∅12 (ds = 12.0 mm [0.472 in.]), 
Aℓ = 6 × 113 = 678 mm2 (1.05 in.2).

For six longitudinal bars No. 4 (ds = 12.7 mm [0.500 in.]), 
Aℓ = 6 × 127 = 762 mm2 (1.18 in.2).

Required stirrups are calculated using Eq. (5.7.2b)
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 ≥ 0.470 mm2/mm (0.019 in.2/in.)

Using ACI 318, the maximum stirrups’ spacing is calcu-
lated to be 160 mm (6.3 in.).

For stirrups ∅8 (ds = 8.0 mm [0.315 in.]) → At = 50.3 mm2 
(0.08 in.2) and s ≤ 107 mm (4.2 in.) and it can be used: s = 
100 mm (4.0 in.).

For stirrups No. 3 (ds = 9.5 mm [0.375 in.]) → At = 71 
mm2 (0.11 in.2) and s ≤ 151 mm (5.9 in.) and it can be used: 
s = 150 mm (5.5 in.).

9.5—Design Example 2: Prestressed concrete box 
girder under combined torsion, shear, and flexure

9.5.1 Design problem statement
9.5.1.1 Design problem description—Design the shear and 

torsional reinforcement of a box girder. A 3658 mm (12 ft) 
wide and 1270 mm (4 ft 2 in.) deep box girder with over-
hanging flanges (Fig. 9.5.1.1(a)) was designed as an alterna-
tive to the double-tee girder in Dade County, FL (Hsu 1997). 
The standard prestressed box girder is simply supported, 
24.00 m (79.00 ft) long, and prestressed with 64 strands at 
1860 MPa (270 ksi), 13.0 mm (1/2 in.), seven-wire strands as 
shown in Fig. 9.5.1.1(b). Total prestress force is 6076 kN (1366 
kips) after prestress loss. The design of flexural reinforcement 
is omitted for simplicity. The concrete cover is 40 mm (1.5 
in.), and material strengths are normalweight concrete: fc′ = 
48.0 MPa (7000 psi) and fy = 420 MPa (60,000 psi).

9.5.1.2 Sectional properties
L	 =	 24.00 m (79.00 ft)
h	 =	 1270 mm (50.00 in.)
d	 =	 1016 mm (40.00 in.) at 0.3L from support
t	 =	 251 mm (9.88 in.) (average of stem width)
bw	 =	 502 mm (20 in.)
A	 =	 1.523 × 106 mm2 (2361.4 in.2)
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I	 =	 319.8 × 109 mm2 (768,336 in.4)
yt	 =	 516 mm (20.34 in.)
yb	 =	 753 mm (29.66 in.)
l	 =	 modification factor of lightweight concrete (l = 1.0)

9.5.1.3 Loading criteria—The standard girders are designed 
to carry a train of cars, each 22.86 m (75 ft 0 in.) long. Each 
car has two trucks with a center-to-center distance of 16.46 
m (54 ft 0 in.). Each truck consists of two axles 1981 mm 
(6 ft 6 in.) apart. The crush live load of each car is 513.8 kN 
(115.5 kip). The maximum web reinforcement amount was 
obtained at section 0.3L from the support under a derailment 
load, which consists of two truckloads located symmetri-
cally at a distance 3200 mm (10 ft 6 in.) from midspan. Each 
axle load is taken as 24 percent of the crush live load (513.8 
kN/4) with 100 percent impact and a maximum side shift 
of 914 mm (36.0 in.). The self-weight of the girder is 34.4 
kN/m (2.36 kip/ft). The girder is also subjected to a superim-
posed dead load caused by the track rails’ weight, rail plinth 
pads, power rail, guard rail, cableway, acoustic barrier, and 
other permanent loads. At derailment, this superimposed 
dead load is assumed to produce a uniform vertical load of 
12.8 kN/m (0.88 kip/ft) and a uniformly distributed torque of 
3.16 kN-m/m (0.71 ft-kip/ft). This torque is neglected in the 
calculation because the magnitude of the distributed torque 
is small, and the torque is acting in a direction opposite to 
the derailment torque.

9.5.2 Solution according to ACI 318-11
1. Determine the factored forces for (ACI 318-11, Section 

9.2.1).
Factored dead and live loads—
The load factor for live loads is taken as 1.6.
The derailment load per axle is calculated by

	
Pu,L = 16

513 8

4
2× ×

.
 = 411 kN/axle (92.4 kip/axle)

The derailment torque per axle is calculated by

	
Tu,L = 16

513 8

4
2 0 914× × ×

.
.

 
	 = 375.7 kN·m/axle (277 ft-kip/axle)

The load factor for dead loads is taken as 1.2.
The girder weight is calculated by

	 wu,g = 1.2(34.4) = 41.3 kN/m (2.83 kip/ft)

The superimposed dead weight is calculated by

	 wu,s = 1.2(12.8) = 15.4 kN/m (1.05 kip/ft)

Factored shear, torque, and bending moment—
The Vu, Tu, and Mu at 0.3L from the support are

Vu	 =	 (wu,g + wu,s)(0.2L) + 2Pu,L = (41.3 + 15.3) × 0.2 × 
24.00 + 2 × 411 = 1094 kN (246 kips)

Tu	 =	 2Tu,L = 2 × 375.7 = 752 kN·m (554 ft-kip)
Mu	 =	 0.5(wu,g + wu,s)(L – 0.3L)(0.3L) + 2Pu,L(0.3L)
	 =	 0.5(41.3 + 15.4)(24.00 – 7.2) × 7.2 + 2 × 411 × 7.2
	 =	 9347 kN·m (6922 ft-kip)

2. Determine if torsion effects may be disregarded.
Check outstanding flanges—
As indicated by Fig. 9.5.1.1(a), the parameter Acp

2/pcp is 
determined by (disregard overhanging flanges)
Acp	 =	 1854 × 203 + 0.5(1854 + 1791) × 1067 = 2.32 × 106 

mm2 (3597 in.2)
pcp	 =	 1854 + 1791 + 2 × 1270 = 6185 mm (243.5 in.)
Acp

2/pcp =(2.32 × 106)2/6185 = 8.70 × 108 mm3 (53,090 in.3)

Table 9.4.6—Summary of design solution of Example 1 using all five solution methods
Code Transverse reinforcement Longitudinal reinforcement

ACI 318

required: 0.61 mm2/mm (0.0227 in.2/in.) 780.8 mm2 (1.18 in.2)

minimum: 0.125 mm2/mm (0.0042 in.2/in.) 0 mm2 (0 in.2)

provided:
∅8/80 mm (No. 3 at 4.50 in.)

0.625 mm2/mm (0.0244 in.2/in.)
6∅14 (6 No. 5)

923 mm2 (1.86 in.2)

EC2-04

required: 0.359 mm2/mm (0.014 in.2/in.) 880 mm2 (1.37 in.2)

minimum: 0.261 mm2/mm (0.0103 in.2/in.) 185 mm2 (0.287 in.2)

provided:
∅8/125 mm (No. 3 at 7.10 in.)
0.402 mm2/mm (0.0155 in.2/in.)

6∅14 (6 No. 5)
924 mm2 (1.88 in.2)

CSA
A23.3-04

required: 0.468 mm2/mm (0.0175 in.2/in.) 402 mm2 (0.61 in.2)

minimum: 0.192 mm2/mm (0.00775 in.2/in.) —

provided:
10M/200.0 mm (No. 3 at 5.90 in.)
0.500 mm2/mm (0.0186 in.2/in.)

Four 15M + two 10M
(6 No. 3 or 6 No. 4)

1000 mm2 (0.66 or 1.18 in.2)

Rahal
(2000b)

required: 0.40 mm2/mm (0.0160 in.2/in.) 568.1 mm2 (0.92 in.2)

minimum: — —

provided:
∅8/120.0 mm (No. 3 at 6.50 in.)
0.417 mm2/mm (0.0183 in.2/in.)

6∅12 (6 No.4)
678 mm2 (1.18 in.2)

Leu and Lee
(2000)

required: 0.470 mm2/mm (0.019 in.2/in.) 615 mm2 (1.0 in.2)

minimum: — —

provided:
∅8/100.0 mm (No. 3 at 5.50 in.)
0.503 mm2/mm (0.0200 in.2/in.)

6∅12 (6 No. 4)
678 mm2 (1.18 in.2)

American Concrete Institute Copyrighted Material—www.concrete.org

24	 REPORT ON TORSION IN STRUCTURAL CONCRETE (ACI 445.1R-12)



Check threshold torque (ACI 318-11, Section 11.5.1)—
Ag	 =	 2.32 × 106 – (1270 – 419)(1320) = 1.20 × 106 mm2 

(1855 in.2)(fTcr/4)
	 =
	  

φ λ φ λ( . )
.

( . )0 083 1
0 33

0 083 1
62 2

′ +
′









 = ′ +f

A

p

f

f
f

A

pc

g

cp

pc

c

c

g

cp

0076

0 33

/

.

A

fc′











	
=0.75(0.083)(1.0) 48 0

1 20 10

6185
1

6076 1523

0 33 48 0
10

6 2

6.
. /

. .

×( )
+







−

	 =	 276 kN·m (202 ft-kip) < 752 kN·m (554 ft-kip)
Factored torsional moment should be considered in design.
3. Determine if dimensions of the cross section are 

adequate (ACI 318-11, Section 11.5.3.1).
Check cross section—

Assume a clear concrete cover of 40 mm (1.5 in.) and 13 
mm No. 4 bars for web reinforcement
Aoh	 =	 0.5[(1854 – 93) + (1791 – 93)](1270 – 93)
	 =	 2.04 × 106 mm2 (3177 in.2)
ph	 =	 (1854 – 93) + (1791 – 93) + 2(1270 – 93)
	 =	 5813 mm (229.5 in.)

e	 =	 (753 – 127) – 9754 7224

9754

− 508

	 =	 496 mm (19.47 in.) at 0.3L from support
d	 =	 yt + e = 516 + 496 = 1012 mm (39.81 in.) at 0.3L 

from support
d	 =	 0.8h = 0.8 × 1270 = 1016 mm (40.00 in.) governs
bw	 =	 2t = 2 × 251 = 502 mm (20.0 in.)
bwd	 =	 502 × 1016 = 510 × 103 mm2 (790 in.2)

The interaction equation for hollow box sections is (Eq. 
(11-18) in ACI 318-11)

Fig. 9.5.1.1—Cross section and elevation of box girder.
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
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.

.φ fc  when t < 
A

p
oh

h

A

p
oh

h

 = 2 04 10

5829

6. ×
 = 351 mm (13.85 in.) > t = 251 in.

	

V

b d

T

A t
u

w

u

oh







+






=
×
×

+
×

1 7

1094 1000

510 10

751 4 10

1 7 23

6

.

.

. ..04 10 2516×( )
 

	 = 2.15 + 0.86 = 3.01 MPa (437 psi)

Vc =
 

0 6 0 083 700 0 0689. . .× ′ + ×






λ f
V d

Mc
u

u

bwd,

where 
V d

M
u

u

 ≤ 1      (Eq. (11-9) in ACI 318-11)

V d

M
u

u

=
×
×

1094 1016

9347 1000
 = 0.119 < 1    OK

Vc = (0.6 × 0.083(1.0) 48 0.  + 700 × 0.00689× 0.119)

510 10

1000

3×





 = 469 kN (105.4 kip)

Vc,min = 2 × 0.083l ′fc bwd

= 2 × 0.083(1.0) 48 0
510 10

1000

3

.
×



  

		  (Eq. (11-3) in ACI 318-11)

= 587 kN (132.13 kip)   governs

φ
V

b d
fc

w
c+ × ′







=
×
×

+ ×


8 0 083 0 75
588 1000

510 10
8 0 083 48 0

3
. . . .




	= 0.75(1.15 + 4.61) = 4.31 MPa (627 psi) > 3.01 MPa (437 
psi)   OK

4. Calculate number of transverse bars required
Design of shear reinforcement (ACI 318-11, Section 

11.4.7)—
Vc	 =	 Vc,min = 587 kN (132.2 kip)

	

A

s

V V

df
v u c

yv

=
−

=
− ×

× ×
φ

φ
( . )

.

1094 0 75 587 1000

0 75 1016 420
 

	 =	 2.043 mm2/mm (0.0818 in.2/in.) 

>
  

A

s

f b

f
v c w

yt

, .min =
′

0 75
12

 = 0.51 mm2/mm (0.021 in.2/in.)

smax	=	 305.0 mm (12.00 in.) for torsion governs
Design of torsional hoop reinforcement (ACI 318-11, 

Section 11.5.3.6)—

	
Ao = Acp – 

2T p

f A
u cp

c cpφ ′  = 2.32 × 106 –
 

2 752 6185 1000

0 75 48 2 32 10

2

6

× × ( )
× × ×. .

	 =	 2.21 × 106 mm2 (3582.7 in.2)
Assume q = 37.5 degrees, as recommended by the code 

provision for prestressed members:

A

s

T

A f
ts u

o yv

= =
( )

× ×( ) × ×φ θ2

752 1000

0 75 2 2 21 10 420 1 303

2

6cot . . .

	 =	 0.414 mm2/mm (0.0166 in.2/in.)
smax	=	 ph/8 = 5813/8 = 727 mm (28.7 in.) > 305 mm (12 

in.) (ACI 318-11, Section 11.5.6);
These calculations indicate that 305 mm (12 in.) spacing 

governs.
Transverse reinforcement for vertical walls (ACI 318-11, 

Section 11.5.3.8)—
Transverse reinforcement in the vertical walls is contrib-

uted by both torsion and shear:

	

A
s

t + = + ×
1

2
0 414 0 5 2 043

A

s
v . . .

 
	 = 1.44 mm2/mm (0.0575 in.2/in.)

	

A

s

A

s

f b

f
t v c w

yt

+





=
′1

2
0 375

12min

.

 
	 = 0.259 mm2/mm (0.01 in.2/in.)
	 < 1.44 mm2/mm (0.0575 in.2/in.) OK 
		  (Eq. (11-23) in ACI 318-11)

Select two layers of ∅18 mm bars (No. 6 bars) in each 
vertical wall at 305 mm (12 in.) spacing

	

2 254

305

( )
( )  = 1.666 mm2/mm (0.0656 in.2/in.)

 
	 > 1.440 mm2/mm (0.0575 in.2/in.)     OK

Transverse reinforcement for horizontal walls—
Transverse reinforcement in horizontal walls is contrib-

uted by torsion only:

	

A

s
t

 
= 0.414 mm2/mm (0.0166 in.2/in.)

Select two layers of ∅10 mm bars (No. 3 bars) in each 
horizontal wall at 305 mm (12 in.) spacing:
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2 78 5

305

× .
 = 0.515 mm2/mm (0.0203 in.2/in.) 

	  
> 0.259 mm2/mm (0.01 in.2/in.)

The transverse reinforcement in the top wall should be 
added to the flexural reinforcement required in the top flange 
acting as a transverse continuous slab.

5. Calculate number of longitudinal bars required.
Design of torsional longitudinal reinforcement (Eq. 

(11-22) in ACI 318-11)—

	

A
A

s
p

f

f
t

h

yv

y
ℓ

ℓ

=








 cot2 θ  = 0.414 × 5813 × 1 × 1.3032

 
	 = 4085.9 mm2 (6.46 in.2)

Check minimum limitation for At/s and Aℓ,min (Eq. (11-23) 
in ACI 318-11)

	

A

s
f

b

f
t

c
w

yt

= ′0 375.  = 0.259 mm2/mm (0.01 in.2/in.)
 

	 < 0.414 mm2/mm (0.0166 in.2/in.)

	

A
f A

f

A

s
p

f

f
c g

yl

t
h

yv

yl
ℓ ,min =

′
− 















5

 
		  (Eq. (11-24) in ACI 318-11)

	
= 

5 0 083 48 0 1 2 10

420

6× ×( ). . .
 – 0.414 × 5813 × 1

 
	 = 8215 – 2407 = 5808 mm2 (9.17 in.2) governs

Select 36 ∅16 bars (No. 5 bars) longitudinal bars

Aℓ = 36 × 201 = 7236 mm2 (11.22 in.2) > 5808 mm2 (9.17 in.2)

Arrangement of reinforcing bars—
The arrangement of the reinforcing bars for torsion and shear 

is summarized in Table 9.4.6. This reinforcement arrangement 
could be conservatively used throughout the girder length.

9.5.3 EC2-04 code
9.5.3.1 Material properties
9.5.3.1.1 Concrete
Concrete compressive cylinder strength (EC2-04, Section 

3.1.2 and 3.1.6)—
- Specified compressive strength (The characteristic 

concrete cylinder compressive strength)

	 fc′ = 48.0 MPa (7000 psi)

- Required average compressive strength (psi)

	 fcr′ = fc′ + 1400 (for fc′ > 5000 psi)

	 fcr′ = 7000 + 1400 = 8400 psi (57.9 MPa)

- Mean compressive strength (based on fcr′)

	 fcm = 57.9 MPa (8400 psi)

- Characteristic compressive strength (MPa) (EC2-04, 
Section 3.1.2(5))

	 fc′ = fcm – 8 ⇒ fck = 49.9 MPa (7240 psi)

- Strength class for concrete according to Section 3.1.2 
(Table 3.1) in EC2-04 corresponding to mean compressive 
strength

	 Strength Class C50, therefore: fc′ = 50 MPa (7250 psi)

- Design compressive strength (EC2-04, Section 3.1.6(1))

	
f

f
cd cc

c

c

=
′

= 





α
γ

1
50

1 5.
 = 33.3 MPa (4833 psi)

- Mean compressive strength according to EC2-04 
(Section 3.1.6(5)) and the strength class of concrete

	 fc′ = fcm + 8 ⇒ fcm = 58.0 MPa (8410 psi)

Concrete tensile strength (EC2-04, Section 3.1.6 (2)—
- Mean tensile strength

	 ft′ = 0.3fc′2/3 = 4.07 MPa (590 psi)

- Design tensile strength

	
f

f f
ctd ct

ctk

c

t= = ×
′

α
γ

, . .

.
0 05 1

0 7

1 5
 = 1.89 MPa (275 psi)

- Modulus of elasticity

Fig. 9.5.3.1.1—Parabola-rect-
angle diagram for concrete under 
compression.
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E

f
m

cm= 





22
10

0 3.

 = 37.28 GPa (5405 ksi) (EC2-04, Section
 

 3.1.3, Table 3.1)

Parabola-rectangle diagram for concrete under compres-
sion, as shown in Fig. 9.5.3.1.1 (EC2-04, Section 3.1.7)

σ
ε
εc cd

c

c

n

f= − −







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







1 1
2

 for 
ec < ec2

sc = fcd for ec ≥ ec2

where 

n
fc= +

− ′





1 4 23 4
90

100

4

. .
 

= 2.00

εc cf2

0 53
2 0 085 50 100= + ′−( )( . ) /

.

 
= 0.0020

εcu
cf

2

4

2 6 35
90

100
100= +

− ′













. /

 
= 0.0035

9.5.3.1.2 Reinforcing steel
Type: Ribbed reinforcing bars (high bond)—
Diameter for longitudinal bars = 12 mm [∅12] (0.472 in.)
Diameter for closed stirrups = 10 mm [∅10] (0.394 in.)
Characteristic yield strength fy = 420 MPa (60 ksi)
Design yield strength (EC2-04, Section 2.4.2.4)—

	
f

f
yd

y

s

= =
γ

420

1 15.
 = 365 MPa (52 ksi)

Modulus of elasticity (EC2-04, Section 3.2.7(4))

	 Es = 200 GPa (29,000 ksi)

Strain at design yield strength

	
εy

yd

s

f

E
=  = 0.0018

Ultimate design strain (EC2-04, Section 3.2.7(2))

	 eud = 0.9euk = 0.0200

9.5.3.1.3 Prestressing reinforcing strands
Type: Low relaxation, 270K, seven-wire strands—
Diameter = 13.0 mm (0.50 in.)
Area As = 99 mm2 (0.153 in.2)
Characteristic tensile strength fpk = fpu = 1860 MPa (270 ksi)
Design ultimate strength (EC2-04, Section 2.4.2.4)

	
f

f
p ud

pk

s
, .

= =
γ

1860

1 15
 = 1617 MPa (234.78 ksi)

Characteristic yield strength (EC2-04, Section 3.3.3(1))

	 fp0.1k = 0.9fpu = 1674 MPa (243 ksi)

Design yield strength (EC2-04, Section 3.3.6(6))

	
f

f
pd

p k

s

= =0 1 1674

1 15
.

.γ
 = 1456 MPa (211 ksi)

Modulus of elasticity (EC2-04, Section 3.3.6(3))

	 Ep = 196 GPa (28,420 ksi)

Strain at design yield strength

	

ε p yd

pd

p

f

E, =  = 0.0074

Ultimate design strain (EC2-04, Section 3.3.6(7))

	 ep,ud = 0.0200

9.5.3.2 Sectional areas and concrete cover
9.5.3.2.1 Gross concrete area
- Area of the gross cross section including overhanging 

flanges

	 = 2.65 × 106 mm2 (4107 in.2)

- Area of the gross cross section (disregarding overhanging 
flanges)

	 = 2.32 × 106 mm2 (3596 in.2)

- Area of the concrete cross section (disregarding over-
hanging flanges)

	 Ac = 1.20 × 106 mm2 (1860 in.2)

9.5.3.2.2 Concrete covers (EC-04, Section 4.4.1.2);
- Minimum cover with regard to bond

cmin,b = diameter of bar = 12 mm (0.47 in.) (reinforcing steel) 
	 = 13 mm (0.51 in.) (prestressing steel)

- Exposure class related to environmental conditions

Exposure Class XD3 (Cyclic wet and dry. Parts of bridges 
exposed to spray containing chlorides.)

- Structural class (XD3) = 4 + 2 (service life of 100 years) – 
1 (concrete class ≥ C45) = 5

- Minimum cover with regard to durability

	 cmin,dur = 50 mm (1.97 in.) (reinforcing steel) 
	 = 60 mm (2.36 in.) (prestressing steel)
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- Minimum cover

	 cmin = max(cmin,b; cmin,dur; 10 mm [0.39 in.]) 
	 = 50 mm (1.97 in.) for reinforcing steel 
	 = 60 mm (2.36 in.) for prestressing steel

- Nominal cover

	 cnom = cmin + 10 mm (0.39 in.) 
	 = 60 mm (2.36 in.) for reinforcing steel 
	 = 70 mm (2.76 in.) for prestressing steel

- Distance from center of longitudinal reinforcing bars to 
extreme concrete fiber (cover from bars centroid)

	 = 66 mm (2.56 in.) > cmin + 12 mm/2 (0.47 in./2)

- Distance from center of prestressed tendons to extreme 
bottom fiber (cover from tendons centroid)

	 = 102 mm (3.94 in.) > cmin + 13 mm/2 (0.51 in./2)

9.5.3.3 Factored shear, torque, bending moment, and prestress
Factored shear force

Vu = 1.4 × (34.4 + 12.8) × 0.2 × 24.0 + 1.5 × (513.8/2) × 2  
	 = 1089 kN (245 kip)

Factored torsional moment

	 Tu = 1.5 × (513.8/2)2 × 0.914 = 705 kN·m (520 ft-kip)

Factored bending moment

	 Mu = 0.5 × 1.4 × (34.4 + 12.8) × 0.7 × 0.3× (24.00)2 
	 + 1.5(513.8/2)(2 × 7.2) = 9561 kN·m (7074 ft-kip)

Prestress force at time t = ∞

	 Pt = 6076 kN (1366 kip)

Total prestress losses

	 20 percent or w = Pt/Po = 0.80

Therefore, prestress force at time t = 0

	 Po = Pt/w = 7595 kN (1708 kip)

9.5.3.4 Prestressed tendons requirements
Minimum longitudinal reinforcement (EC2-04, Section 

9.2.1.1)

	

A
f

f
b d b dt

yk
t tℓ =

′
≥0 26 0 0013. .

where bt = 470 mm (18.5 in.) mean width of tension zone, 
and d = 1172 mm (46.1 in.) distance from extreme top fiber 
to the centroid of the reinforcement.

Therefore,

	 Aℓ,min = 716 mm2 (1.1 in.2)

The area of the prestressed tendons is

	 AP = 64 × 99 = 6336 mm2 (9.82 in.2) ≥ Asℓ,min      OK

9.5.3.5 Shear design
9.5.3.5.1 Design shear resistance of a member without 

shear reinforcement (EC2-04, Section 6.2.2(1))

V C k f k b d v k b dRd c Rd c ck cp w cp w, ,

/= ( ) +



 ≥ +( )100

1 3

1 1ρ σ σℓ min

where
d	 =	 517 + 494 = 1011 mm (39.8 in.) at 0.3L = 7.2 m 

(23.7 ft) (9.5.1.1(b))
bw	 =	 470 mm (18.50 in.)
CRd,c =	 0.18/gc = 0.18/1.5 = 0.12
k	 =	 1+ 200 2d ≤  ⇒ k = 1.44

ρℓ = ≤
A

b d
p

w

0 02.  ⇒ rℓ = 0.0133

σcp
Ed

c

t

c

N

A

P

A
= =  = 5.1 MPa (734.4 psi) (compressive)

k1	 =	 0.15
vmin	 =	 0.035k3/2fck

1/2 ⇒ vmin = 0.428
Therefore

	 VRd,c = 698 kN (156.2 kip)

Because

	 VRd,c < VEd = 1089 kN (245 kip), 
	 shear reinforcement must be provided

9.5.3.5.2 Minimum shear reinforcement (EC2-04, Section 
9.2.2(5))

The ratio of the minimum stirrups is

ρw,min = ( ) = ×0 08 0 08 49 9 1 2 420. . . / ( . )f fck yk  = 0.00113

Therefore

A

sb

A

s
sw

w

sw





≥ → 





≥
min min

0 00113. 0.5311 mm /mm (0.0202 99 in. /in.)2

9.5.3.5.3 Maximum effective cross-sectional area of the 
shear reinforcement (EC2-04, Section 6.2.3(3))
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A f

sb
vf

A

s

vb f

f
yd

w
c cd

sw c w cd

yd

sw.max

max

≤ → 





≤
1

2 2
α

α

where
v = 0.6(1 – fck/250) = 0.48
ac = 1 + scp/fcd = 1.154 (because scp ≤ 0.25fcd)

Therefore

	

A

s
sw





≤
max

 11.86 mm2/mm (0.47 in.2/in.)

9.5.3.5.4 Required shear reinforcement (EC2-04, Section 
6.2.3(4))

	

V
V

V
VRd

Rd s

Rd
Ed=









≥min ,

,max

         
V

b zvf
Rd

c w cd
, cot tanmax =

+( )
α

θ θ
		  (Eq. (6.14) in EC2-04)

With the above data and

	 z = 0.9d ⇒ z = 910 mm (35.8 in.)

	 fcd = 33.3 MPa (4830 psi)

	 1 ≤ cotq ≤ 2.5 ⇒ 22 degrees ≤ q ≤ 45 degrees 
	 (mean value: q = 35 degrees)

	
VRd ,

. . .

cot tanmax =
× × × ×

+( )
1 154 470 910 0 48 33 3

θ θ

For
q = 45 degrees

	 VRd,max = 3945 kN (886 kips) > VEd,

q = 35 degrees

	 VRd,max = 3707 kN (832 kips) > VEd, and

q = 22 degrees

	 VRd,max = 2740 kN (615 kips) > VEd.

Thus for (Eq. (6.13) in EC2-04)

	 VRd = VRd,s ≥ VEd

	
V

A

s
zf V

A

s

V

zf

A

sRd s
sw

yd Ed
sw Ed

yd

sw
, cot

cot
= ≥ ⇒ ≥ ⇒ ≥

×
×

θ
θ

1089 10

910 3

3

665 × cot θ

q = 45 degrees

	

A

s
sw ≥  3.28 mm2/mm (0.131 in.2/in.),

q = 35 degrees

	

A

s
sw ≥  2.30 mm2/mm (0.092 in.2/in.), and

q = 22 degrees

	

A

s
sw ≥  1.32 mm2/mm (0.053 in.2/in.).

Check

	

A

s

A

s

A

s
sw sw sw





< < 





min max

      OK

9.5.3.6 Torsion design
9.5.3.6.1 Terms of the equivalent thin-walled section 

(EC2-04, Section 6.3.2(1));

	

t
A

u
c

tef real=











≤ =









≤max max
2

1
ℓ

375 mm

134 mm
78 mm

  
	 ⇒ tef = 178 mm (7 in.)

where
A	 =	 2.32 × 106 mm2 (3597 in.2) total area of the cross 

section within the outer circumference, including 
inner hollow areas (disregarding overhanging flanges)

u	 =	 6185 mm (243.5 in.) outer circumference of the 
cross section (disregarding overhanging flanges)

cℓ	 =	 66 mm (2.56 in.) distance from edge to center of the 
longitudinal reinforcement

treal	 =	 178 mm (7 in.) minimum wall thickness of the real 
concrete thin-walled section.

The continuous area and perimeter enclosed by centerlines 
of the connecting thin-walls, as shown in Fig. 9.5.3.6.1, are: 
Ak = 1.8 × 106 mm2 (2794 in.2) and uk = 5486 mm (216 in.).

9.5.3.6.2 Determine if cross-sectional dimensions (for 
example, strength of concrete struts under torsion) are 
adequate (EC2-04, Section 6.3.2(4))

Dimensions of the cross section are adequate if (Eq. (6.29) 
in EC2-04)

	

T

T

V

V
Ed

Rd

Ed

Rd, ,max max

+ ≤ 1

The design torsional resistance moment is calculated as 
(Eq. (6.30) in EC2-04)

	 TRd,max = 2vacfcdAktefsinqcosq

where
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	 v = 0.6(1 – fck/250) = 0.48 and ac = 1 + scp/fcd = 1.154

and for
q = 45 degrees

	 TRd,max = 5915 kN·m (4356 ft-kip),

q = 35 degrees

	 TRd,max = 5559 kN·m (4093 ft-kip)

q = 22 degrees

	 TRd,max = 4109 kN·m (3026 ft-kip)

Design shear resistance force is determined by (Eq. (6.14) 
in EC2-04)

	
V

b zvf
Rd

c w cd
, cot tanmax =

+( )
α

θ θ

Thus for
q = 45 degrees

	

T

T

V

V
Ed

Rd

Ed

Rd, ,

.
max max

+ = + =
705

5910

1089

3945
0 39  ≤ 1     OK

q = 35 degrees

	

T

T

V

V
Ed

Rd

Ed

Rd, ,

.
max max

+ = + =
705

5554

1089

3707
0 42

 
≤ 1     OK

q = 22 degrees

	

T

T

V

V
Ed

Rd

Ed

Rd, ,

.
max max

+ = + =
705

4085

1089

2740
0 57  ≤ 1     OK

Dimensions of the cross section, therefore, are adequate 
for every case (every value of q).

9.5.3.6.3 Calculate the required stirrup area for torsion. 
(EC2-04, Section 6.3.2(2))

The required stirrup area per unit length is calculated by

	

A

s

T

A f

A

s
sw Ed

k yd

sw≥ ⇒ ≥
×

× × × ×2

705 10

2 1 8 10 365

6

6cot . cotθ θ

For
q = 45 degrees

	

A

s
sw ≥  0.54 mm2/mm (0.021 in.2/in.),

q = 35 degrees

	

A

s
sw ≥  0.38 mm2/mm (0.015 in.2/in.), and

q = 22 degrees

	

A

s
sw ≥  0.22 mm2/mm (0.009 in.2/in.)

where Asw and s are the area of one leg of a closed stirrup 
resisting torsion and the spacing of the stirrups, respectively.

9.5.3.6.4 Add stirrup areas for torsion and shear, and 
select the stirrups (EC2-04, Section 6.3.2(2))

	

A

s

A

s

A

s
sw S T sw S sw T, , ,+ = +

1

2
 (using two single-legged stirrups)

For
q = 45 degrees

	

A

s
sw S T, + ≥  2.18 mm2/mm (0.087 in.2/in.),

q = 35 degrees

Fig. 9.5.3.6.1—Assumed effective thin-wall section.
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A

s
sw S T, + ≥  1.53 mm2/mm (0.061 in.2/in.), and

q = 22 degrees

	

A

s
sw S T, + ≥  0.88 mm2/mm (0.035 in.2/in.).

Maximum longitudinal spacing of the stirrups for shear 
(Eq. (9.6N) in EC2-04)

	
s d s dmax max= +( )  → == °0 75 1 0 7590. cot .α α

 
	 = 758 mm (29.8 in.)

where a is the inclination of the stirrups.
Maximum longitudinal spacing of the stirrups for torsion 

(EC2-04, Section 9.2.3(3))

	

s

u

d

b h
max = +( )












=min

/

. cot

min( , )

min

8

0 75 1 θ
773 mm

758 mm

2235 mm











  
	 = 235 mm (9.25 in.)

For two single-legged ∅10 stirrups, spacing is calculated 
from shear and torsion
For
q = 45 degrees

	 s ≤ 72 mm (2.8 in.) < smax   OK

q = 35 degrees

	 s ≤ 102 mm (4.0 in.) < smax   OK

q = 22 degrees

	 s ≤ 178 mm (7.0 in.) < smax   OK

Total selection (q = 35 degrees): two single-legged stir-
rups of ∅10/100 mm (diameter 0.39 in. at 4.0 in.).

9.5.3.6.5 Longitudinal reinforcement required for torsion 
(EC2-04, Section 6.3.2(3))

Total longitudinal reinforcement for torsion (Eq. (6-28) in 
EC2-04)

	

Σ ΣA
T u

A f
As

Ed k

k yd
sℓ ℓ≥ ⇒ ≥

× × ×
× × ×

cot cot

.

θ θ
2

705 10 5486

2 1 8 10 365

6

6

For
q = 45 degrees

	 SAsℓ ≥ 2943 mm (4.62 in.2),

q = 35 degrees

	 SAsℓ ≥ 4204 mm2 (6.60 in.2), and

q = 22 degrees

	 SAsℓ ≥ 7285 mm2 (11.50 in.2).

Longitudinal bars shall be arranged so that at least one 
bar is placed at each corner of the stirrups and the others 
are distributed uniformly around the inner periphery of the 
torsion links (closed stirrups) with a maximum spacing of 
350 mm (13.8 in.) (EC2-04, Section 9.2.3(4)). Therefore, the 
number of the longitudinal bars is at least 36.
For
q = 45 degrees

38∅10 → SAsℓ = 2985 mm (4.63 in.2) > 2943 mm (4.63 in.2),

q = 35 degrees

38∅12 → SAsℓ = 4298 mm2 (6.66 in.2) > 4204 mm2 (6.61 in.2), 
and

q = 22 degrees

38∅16 → SAsℓ = 7640 mm2 (11.84 in.2) > 7285 mm2 (11.58 in.2).

Final selection of longitudinal bars (q = 35 degrees)

	 ∅12 (0.47 in.) → Asℓ = 113 mm2 (0.175 in.2).

Due to uniform distribution and symmetry

40∅12 → SAsℓ = 4524 mm2 (7.0 in.2).

The torsional longitudinal reinforcement is in addition 
to the prestressing tendons. Low values of angle q (q = 22 
degrees) lead to a design with lower area requirements of 
transverse reinforcement (∅10/175 mm) and higher area 
requirements of longitudinal reinforcement (40∅16). High 
values of angle q (q = 45 degrees) lead to higher area require-
ments of stirrups (∅10/70 mm) and lower area requirements 
of longitudinal bars (40∅10).

The selection of q = 45 degrees maximizes the concrete 
strength components, such as VRd,max = 3945 kN and TRd,max 
= 5910 kN·m. This value of angle q could be used when 
checking the adequacy of the cross section dimensions.

The following relationship between the strength of 
concrete struts under torsion is satisfied

	

T

T

V

V
Ed

Rd

Ed

Rd, ,max max

+ ≤ 1

9.5.3.6.6 Arrangement of reinforcing bars—Total rein-
forcement of the member with a hollow cross section under 
combined loading of prestressing, torsion, shear, flexure, 
and axial force is depicted in detail in Fig. 9.5.3.6.6.

9.5.4 Design solution using CSA-A23.3-04 code—Load 
factors of the CSA-A23.3-04 code are used here to establish 
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the forces due to factored loads. These factors are 1.25 for 
dead loads and 1.50 for live loads. The cross-sectional area 
of the prestressing strands (fpu = 1860 MPa [270 ksi]) is 6336 
mm2 (9.82 in.2), the effective prestressing force is 6076 kN 
(1366 kip), and the average prestress is 3.99 MPa (589 psi). 
The concrete strength is 48.0 MPa (7000 psi), and the yield 
strength of the non-prestressed reinforcement is 420 MPa 
(60,000 psi).

1. Determine the factored forces (CSA-A23.3-04, Annex C).
Factored dead and live loads—
The derailment load per axle is calculated by

	
Pu,L = 1.5

513 8

4

.



 2 = 385 kN/axle (86.6 ft/axle)

The derailment torque per axle is determined by

	
Tu,L = 1.5

513 8

4

.



 (2 × 0.914) = 352 kN·m (259.8 ft-kip)

The girder weight (with a load factor of 1.25) is deter-
mined by

	 wu,g = 1.25 × 34.3 = 43.0 kN/mm (2.95 kip/ft)

The superimposed dead weight (with a load factor of 1.25) 
is calculated by

	 wu,s = 1.25 × 12.8 = 16.0 kN/mm (1.10 kip/ft)

Factored shear, torque, and bending moment—
At distance 0.3L from support, the following values are 

obtained

Vu = (43.0 + 16.0)(0.2 × 24.00) + 2 × 385 = 1053 kN (237 kip)

	 Tu = 2 × 352.3 = 705 kN·m (520 ft-kip)

	 Mu = 0.5(43.0 + 16.0)(24.00 – 7.2)7.2 + 2 × 385 × 7.2 
	 = 9112 kN·m (6759 ft-kip)

2. Determine if torsion effects can be disregarded (CSA-
A23.3-04, Section 11.2.9.1).

Threshold torque—
For a hollow section with a wall thickness of less than 

0.75Ac/pc (= 281 mm > 178 mm), torsion must be considered 
if the torque due to factored loads, Tf, exceeds 0.25Tcr

	

T
A

p
f

f

f
cr

g

c
c c

p cp

c c

=
( )

′ +
′

1 5
0 38 1

0 38

2
.

.
.

λφ
φ

λφ

where
Ac	 =	 Acp = 2.32 × 106 mm2 (3597 in.2)
pc	 =	 pcp = outside perimeter of concrete cross section = 

6185 mm (243.5 in.)
Ag	 =	 gross area of section (without flanges) = 1.20 × 106 

mm2 (1855 in.2)
l	 =	 factor to account for low-density concrete = 1.0
fc	 =	 resistance factor for concrete = 0.70 for precast 

concrete
fp	 =	 resistance factor for prestressing reinforcement = 

0.90
fc′	 =	 specified compressive strength of concrete = 48.0 

MPa (7.0 ksi)
fcp	 =	 compression stress in concrete due to effective 

prestress = 3.99 MPa (0.6 ksi)

Fig. 9.5.3.6.6—Reinforcement configuration (EC2-04).
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With this information, the following calculation can be 
made

	
Tcr =

× ×
× +

×
×

( . . )
. . .

. .

. . .

1 5 1 20 10

6185
0 38 0 70 48 0 1

0 9 3 99

0 38 0 70 48

6 2

00   
	 = 1658 kN·m (1216 ft-kip)

Because 0.25Tcr = 415 kN∙m (304 ft-kip) < 705 kN∙m (520 
ft-kip), torsion must be considered in the design.

3. Determine if dimensions of the cross section are adequate.
Check cross-sectional dimensions (CSA-A23.3-04, Section 

11.3.10.4)—
For box sections with a wall thickness of less than Aoh/

ph, the cross-sectional dimensions must satisfy the following 
criterion (Eq. (11-19) in CSA-A23.3-04)

	

V V

b d

T

A t
ff p

w v

f

oh
c c

−
+ ≤ ′

1 7
0 25

.
. φ

where
Vf	 =	 Vu = shear force due to factored loads = 1054 kN 

(237.2 kip)
Vp	 =	 shear force due to prestressing factored by fp

	 =	 0.9(6076)508/9754 = 284 kN (64.0 kip)
Aoh	 =	 [(1854 + 1791)/2 – 2 × 48)](1270 – 2 × 48) = 2.03 

× 106 mm2 (3142 in.2)
ph	 =	 (1854 – 96) + (1791 – 96) + 2(1270 – 96) = 5801 

mm (228.4 in.)
Aoh/ph =	 350 mm (13.8 in) > 178 mm (7.0 in.) for bottom 

flange
	 >	 235 mm (9.25 in.) for web
	 >	 203 mm (8 in.) for top flange
dv	 =	 larger of 0.9d = 0.9 × 1016 = 914 mm and 0.72h = 

0.72 × 1270 = 914 mm (36 in.)
t	 =	 minimum wall thickness = 178 mm (7.0 in.)
Tu	 =	 torque due to factored loads = 705 kN∙m (520 ft-kip)

Therefore,

	

( )

. .

1054 284 10

235 2 914

705 10

1 7 2 03 10 235

3 6

6

− ×
× ×

+
×

× × ×  
	 = 2.66 MPa (386 psi) < 0.25 × 0.70 × 48.0 = 8.40 MPa  
	 (1223 psi)     OK

Because the web governs design, the above equation 
was the web thickness t = 235 mm, not the bottom flange 
thickness.

4. Calculate q and b (CSA-A23.3-04, Section 11.3.6.4).
Angle of diagonal compression strut and shear resistance 

of concrete—
The angle of inclination of the diagonal compression strut 

is given by the expression (Eq. (11-12) in CSA-A23.3-04)

	 q = 29 + 7000ex

In the absence of an axial load normal to the cross section, 
the strain at mid-depth of the section is defined by (Eq. 
(11-13) in CSA-A23.3-04)

	

εx

f

v
f p

h f

o
p po

s s p p

M

d
V V

p T

A
A f

E A E A
=

+ − +






−

+

( )
.

[ ]

2

2
0 9

2

2

The terms not defined above are
Mf	 =	 Mu = moment due to factored loads = 9166 kN∙m 

(6761 ft-kip)
Ao	 =	 0.85Aoh = 0.85 × 2.04 × 106 mm2 = 1.74 × 106 mm2 

(2697 in.2)
Ap	 =	 area of prestressing reinforcement = 6336 mm2 

(9.8 in.2)
fpo	 =	 stress in prestressing tendons (may be taken as 

0.7fpu = 1302 MPa [189.0 ksi])
Es	 =	 200,000 MPa (29,000 ksi)
As	 =	 area of non-prestressed reinforcement in tension 

zone (assume fourteen 15M bars with 2800 mm2 
(4.34 in.2)

Ep	 =	 190,000 MPa (28,000 ksi)
With this information, the following calculation can be 

made

	
εx =

× + − × + × × ×
× ×

9112 10
914

1054 284 10
0 9 5801 705 10

2 1 74 10

6
3 2

6

[( ) ]
.

. 66

2

1302 6336

2 200 000 2800 190 000 6336
0 00086







− ×

× + ×
=

( , , )
.

Therefore

	 q = 29 + 7000 × 0.00086 = 35.0°

The shear force resisted by the concrete is (Eq. (11-6) in 
CSA-A23.3-04)

	
V f b dc c c w v= ′φ λβ

where (Eq. (11-11) in CSA-A23.3-04)

	
β

ε
=

+
×

+
0 40

1 1500

1300

1000

.

x zes

Because minimum transverse reinforcement is provided, 
sze = 300 mm (12 in.)

Therefore

	
β =

+
×

+
=

0 40

1 1500 0 00086

1300

1000 300
0 175

.

( . )
.

and

	 Vc = 0.70 × 1.0 × 0.175( 48 0. )235 × 2 × 914 N 
	 = 365 kN (80.7 kip)
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5. Calculate transverse reinforcement.
Design of transverse reinforcement for shear (CSA-A23.3-

04, Section 11.3.5.1)—
Shear with Vs = Vf – Vc – Vp = 1054 – 365 – 284 = 405 kN 

(92.6 kip)

	

A

s

V

f d
v s

s y v

= =
×

× × × °φ θcot . cot .

405 10

0 85 420 914 35 0

3

 
	 = 0.87 mm2/mm (0.0356 in.2/in.)

Design of transverse reinforcement for torsion (CSA-
A23.3-04, Section 11.3.10.3)—

The required transverse reinforcement for torsion is given 
by (Eq. 11-17 in CSA-A23.3-04)

	

A

s

T

A f
t u

o s y

= =
×

× × × × × °2

705 10

2 1 74 10 0 85 420 35 0

6

6φ θcot . . cot .
 

	 = 0.40 mm2/mm (0.0160 in.2/in.)

This amount of transverse reinforcement must be provided 
in the top and bottom slabs.

Total transverse reinforcement in one web is calculated as

	

A

s

A

s
t v+

2
 = 0.40 + 0.87/2 = 0.835 mm2/mm (0.0338 in.2/in.)

The selection of two 10M bars (Abar = 100 mm2) per web 
yields the following bar spacing

	 s = 2(100)/0.835 = 240 mm; select s = 225 mm (9.17 in.)

Minimum transverse reinforcement (CSA-A23.3-04, 
Section 11.2.8.2)—

The minimum transverse reinforcement is established 
with the maximum web thickness at the top of the web, bw = 
534 mm (21.0 in.)

	

min
. . .

A

s
f

b

f
v

c
w

y

= ′ = 





0 06 0 06 48 0
534

420
 

	 = 0.528 mm2/mm (0.0212 in.2/in.) 
	 < 0.835 mm2/mm (0.0338 in.2/in.)

For Tf > 0.25Tcr, max s = 0.35dv = 0.35(914) = 320 mm 
(12.6 in.) > 225 mm. (9.17 in.)      OK

6. Calculate the longitudinal reinforcement.
Design of longitudinal reinforcement for torsion (CSA-

A23.3-04, Section 11.3.10.6 and 11.3.9.2)—
Longitudinal reinforcement on the tension side of the girder 

shall have dimensions such that its factored resistance shall 
not be less than that given by the following expression. In 
the absence of an axial load normal to the cross section, the 
required longitudinal force due to torsion, shear, and flexure is

	

F
M

d
V V V

p T

At

f

v
f s p

h f

o
ℓ = + − − +







cot ( . )
.

θ 0 5
0 45

2
2

2

	
=

×
+ ° − −













 +

×9112 10

914
35 0 1054

405

2
284 10

0 456
3

2

cot . ( )
. 55801 705 10

2 1 74 10

6

6

2
× ×

× ×




.

	 = 9969 + 1108 = 11,077 kN (2503 kip)

Factored tension resistance provided by the prestressing 
reinforcement with fpr = 0.96fpu = 1786 MPa (259 ksi) (CSA-
A23.3-04, Section 18.6.2)

	
F A ftr p p prℓ = = × × × −φ 0 9 6336 1786 10 3.

 
	 = 10,184 kN (2290 kips)

The non-prestressed reinforcement required in tension 
zone is calculated by

	
As =

−
×

( , , )( )

.

11 077 10 184 10

0 85 420

3

 = 2501 mm2 (4.26 in.2)

These calculations indicate that fourteen 15M bars are 
required, providing As = 2800 mm2. This reinforcement is to 
be distributed in the tension zone.

Because the compression due to moment is much greater 
than the tension due to torsion and shear, there is no need to 
check the tension reinforcement required in the compres-
sion zone.

9.5.5 Comparison of design solutions according to ACI 
318, CSA-A23.3-04, and EC2-04—The required longitu-
dinal and transverse reinforcement calculated using ACI 
318, CSA-A23.3-04, and EC2-04 is shown in Table 9.5.5. 
The longitudinal reinforcement (“L” Bars) given is the total 
amount required for the entire cross section. The required 
transverse reinforcement is given for the top wall (“T-1” 
Bars), side walls (“T-2” Bars), and bottom walls (“T-3” 
Bars). The transverse reinforcement in the top wall should 
be added to the flexural reinforcement required in the top 
wall acting as a transverse continuous slab.

Arrangement of reinforcing bars—

Fig. 9.5.5—Reinforcement locations for box girder under 
combined torsion, shear, and flexure.
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Arrangement of the reinforcing bars for torsion and shear 
is shown in Fig. 9.5.5 and summarized in Table 9.5.5.

The general location of longitudinal and transverse rein-
forcement in the section, which is shown in Fig. 9.5.5, is 
based on all three design codes.

Table 9.5.5—Summary of design solution of 
Example 2 using design codes ACI 318-11, 
EC2-04, and CSA-A23.3-04

Reinforcing 
bars

Design code

ACI 318-11

EC2-04
(45, 35, and 22 

degrees) CSA-A23.3-04

“L” bars
5808 mm2 
(9.2 in.2)

4204 mm2 
(6.61 in.2)

2503 mm2 
(4.26 in.2)

“T-1” and “T-3” 
bars (torsion)

0.414 mm2/mm
(0.0166 in.2/in.)

2.18, 1.53, 0.88
mm2/mm

(0.087, 0.061, 
0.035 in.2/in.)

0.40 mm2/mm
(0.0160 in.2/in.)

“T-2” bars
(torsion + shear)
1.44 mm2/mm

(0.0575 in.2/in.)

2.18, 1.53, 0.88
mm2/mm

(0.087, 0.061, 
0.035 in.2/in.)

0.835 mm2/mm
(0.0338 in.2/in.)

To purchase a complete copy of ACI 445.1R-12, 
please visit the ACI Bookstore.
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