An ACI Standard An ANSI Standard

318-19(22

 $\overline{\bigcirc}$

Building Code Requirements for Structural Concrete (ACI 318-19)

Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19)

Reported by ACI Committee 318

ACI 318-19

(Reapproved 2022)

Building Code Requirements for Structural Concrete (ACI 318-19)

An ACI Standard

Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19)

Reported by ACI Committee 318

Jack P. Moehle, Chair

Neal S. Anderson Roger J. Becker John F. Bonacci Dean A. Browning JoAnn P. Browning James R. Cagley Ned M. Cleland Charles W. Dolan Catherine E. French Robert J. Frosch

Theresa M. Ahlborn F. Michael Bartlett Asit N. Baxi Abdeldielil Belarbi Allan P. Bommer Sergio F. Brena Jared E. Brewe Nicholas J. Carino Min Yuan Cheng Ronald A. Cook David Darwin Curtis L. Decker Jeffrey J. Dragovich Jason L. Draper Lisa R. Feldman Damon R. Fick David C. Fields

Raul D. Bertero* Mario Alberto Chiorino Juan Francisco Correal Daza* Kenneth J. Elwood* Luis B. Fargier-Gabaldon

VOTING MEMBERS Luis E. Garcia Satyendra Ghosh James R. Harris Terence C. Holland James O. Jirsa Dominic J. Kelly Gary J. Klein Ronald Klemencic William M. Klorman Michael E. Kreger

SUBCOMMITTEE MEMBERS

Anthony E. Fiorato Rudolph P. Frizzi Wassim M. Ghannoum Harry A. Gleich Zen Hoda R. Brett Holland R. Doug Hooton Kenneth C. Hover I-chi Huang Matias Hube Mary Beth D. Hueste Jose M. Izquierdo-Encarnacion Maria G. Juenger Keith E. Kesner Insung Kim Donald P. Kline Jason J. Krohn

Werner A. F. Fuchs*

Patricio Garcia*

Raymond Ian Gilbert

Wael Mohammed Hassan

Angel E. Herrera

Robert F. Mast

Basile G. Rabbat

Raymond Lui Paul F. Mlakar Michael C. Mota Lawrence C. Novak Carlos E. Ospina Gustavo J. Parra-Montesinos Randall W. Poston Carin L. Roberts-Wollmann Mario E. Rodriguez

Colin L. Lobo

Gregory M. Zeisler, Secretary (Non-voting)

Daniel A. Kuchma James M. LaFave Andres Lepage Remy D. Lequesne Ricardo R. Lopez Laura N. Lowes Frank Stephen Malits Leonardo M. Massone Steven L. McCabe Ian S. McFarlane Robert R. McGlohn Donald F. Meinheit Fred Meyer Daniel T. Mullins Clay J. Naito William H. Oliver Viral B. Patel

David H. Sanders Thomas C. Schaeffer Stephen J. Seguirant Andrew W. Taylor John W. Wallace James K. Wight Sharon L. Wood Loring A. Wyllie Jr. Fernando Yanez

Conrad Paulson Jose A. Pincheira Mehran Pourzanjani Santiago Pujol Jose I. Restrepo Nicolas Rodrigues Andrea J. Schokker Bahram M. Shahrooz John F. Silva Lesley H. Sneed John F. Stanton Bruce A. Suprenant Miroslav Vejvoda W. Jason Weiss Christopher D. White

Guillermo Santana Ahmed B. Shuraim Roberto Stark* Julio Timerman Roman Wan-Wendner

LIAISON MEMBERS

Augusto H. Holmberg* Hector Monzon-Despang Ernesto Ng Guney Ozcebe Enrique Pasquel*

*Liaison members serving on various subcommittees.

David P. Gustafson Neil M. Hawkins

2019

ACI 318-19 supersedes ACI 318-14, was adopted May 3, 2019, and published June

Copyright © 2019, American Concrete Institute.

CONSULTING MEMBERS

David M. Rogowsky

All rights reserved including rights of reproduction and use in any form or by any means, including the making of copies by any photo process, or by electronic or mechanical device, printed, written, or oral, or recording for sound or visual reproduction or for use in any knowledge or retrieval system or device, unless permission in writing is obtained from the copyright proprietors.

Building Code Requirements for Structural Concrete and Commentary

Copyright by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ACI.

The technical committees responsible for ACI committee reports and standards strive to avoid ambiguities, omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionally find information or requirements that may be subject to more than one interpretation or may be incomplete or incorrect. Users who have suggestions for the improvement of ACI documents are requested to contact ACI via the errata website at http://concrete.org/Publications/ DocumentErrata.aspx. Proper use of this document includes periodically checking for errata for the most up-to-date revisions.

ACI committee documents are intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations and who will accept responsibility for the application of the material it contains. Individuals who use this publication in any way assume all risk and accept total responsibility for the application and use of this information.

All information in this publication is provided "as is" without warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose or non-infringement.

ACI and its members disclaim liability for damages of any kind, including any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of this publication.

It is the responsibility of the user of this document to establish health and safety practices appropriate to the specific circumstances involved with its use. ACI does not make any representations with regard to health and safety issues and the use of this document. The user must determine the applicability of all regulatory limitations before applying the document and must comply with all applicable laws and regulations, including but not limited to, United States Occupational Safety and Health Administration (OSHA) health and safety standards.

Participation by governmental representatives in the work of the American Concrete Institute and in the development of Institute standards does not constitute governmental endorsement of ACI or the standards that it develops.

Order information: ACI documents are available in print, by download, through electronic subscription, or reprint, and may be obtained by contacting ACI.

ACI codes, specifications, and practices are made available in the ACI Collection of Concrete Codes, Specifications, and Practices. The online subscription to the ACI Collection is always updated, and includes current and historical versions of ACI's codes and specifications (in both inch-pound and SI units) plus new titles as they are published. The ACI Collection is also available as an eight-volume set of books and a USB drive.

American Concrete Institute 38800 Country Club Drive Farmington Hills, MI 48331 Phone: +1.248.848.3700 Fax: +1.248.848.3701

www.concrete.org

PREFACE TO ACI 318-19

The "Building Code Requirements for Structural Concrete" ("Code") provides minimum requirements for the materials, design, and detailing of structural concrete buildings and, where applicable, nonbuilding structures. This Code was developed by an ANSI-approved consensus process and addresses structural systems, members, and connections, including cast-in-place, precast, shotcrete, plain, nonprestressed, prestressed, and composite construction. Among the subjects covered are: design and construction for strength, serviceability, and durability; load combinations, load factors, and strength reduction factors; structural analysis methods; deflection limits; mechanical and adhesive anchoring to concrete; development and splicing of reinforcement; construction document information; field inspection and testing; and methods to evaluate the strength of existing structures.

The Code was substantially reorganized and reformatted in 2014, and this Code continues and expands that same organizational philosophy. The principal objectives of the reorganization were to present all design and detailing requirements for structural systems or for individual members in chapters devoted to those individual subjects, and to arrange the chapters in a manner that generally follows the process and chronology of design and construction. Information and procedures that are common to the design of multiple members are located in utility chapters. Additional enhancements implemented in this Code to provide greater clarity and ease of use include the first use of color illustrations and the use of color to help the user navigate the Code and quickly find the information they need. Special thanks to Bentley Systems, Incorporated, for use of their ProConcrete software to produce many of the figures found in the Commentary.

Uses of the Code include adoption by reference in a general building code, and earlier editions have been widely used in this manner. The Code is written in a format that allows such reference without change to its language. Therefore, background details or suggestions for carrying out the requirements or intent of the Code provisions cannot be included within the Code itself. The Commentary is provided for this purpose.

Some considerations of the committee in developing the Code are discussed in the Commentary, with emphasis given to the explanation of new or revised provisions. Much of the research data referenced in preparing the Code is cited for the user desiring to study individual questions in greater detail. Other documents that provide suggestions for carrying out the requirements of the Code are also cited.

Technical changes from ACI 318-14 to ACI 318-19 are outlined in the August 2019 issue of *Concrete International* and are marked in the text of this Code with change bars in the margins.

KEYWORDS

admixtures; aggregates; anchorage (structural); beam-column frame; beams (supports); caissons; cements; cold weather; columns (supports); combined stress; composite construction (concrete to concrete); compressive strength; concrete; construction documents; construction joints; continuity (structural); contraction joints; cover; curing; deep beams; deep foundations; deflections; drilled piers; earthquake-resistant structures; flexural strength; floors; footings; formwork (construction); hot weather; inspection; isolation joints; joints (junctions); joists; lightweight concrete; load tests (structural); loads (forces); mixture proportioning; modulus of elasticity; moments; piles; placing; plain concrete; precast concrete; prestressed concrete; spiles; strength analysis; stresses; structural analysis; structural design; structural integrity; structural walls; T-beams; torsion; walls; water; welded wire reinforcement.

INTRODUCTION

ACI 318-19, "Building Code Requirements for Structural Concrete," hereinafter called the Code or the 2019 Code, and ACI 318R-19, "Commentary," are presented in a sideby-side column format. These are two separate but coordinated documents, with Code text placed in the left column and the corresponding Commentary text aligned in the right column. Commentary section numbers are preceded by an "R" to further distinguish them from Code section numbers. The two documents are bound together solely for the user's convenience. Each document carries a separate enforceable and distinct copyright.

As the name implies, "Building Code Requirements for Structural Concrete" is meant to be used as part of a legally adopted building code and as such must differ in form and substance from documents that provide detailed specifications, recommended practice, complete design procedures, or design aids.

The Code is intended to cover all buildings of the usual types, both large and small. Requirements more stringent than the Code provisions may be desirable for unusual construction. The Code and Commentary cannot replace sound engineering knowledge, experience, and judgment.

A building code states only the minimum requirements necessary to provide for public health and safety. The Code is based on this principle. For any structure, the owner or the licensed design professional may require the quality of materials and construction to be higher than the minimum requirements necessary to protect the public as stated in the Code. However, lower standards are not permitted.

The Code has no legal status unless it is adopted by the government bodies having the police power to regulate building design and construction. Where the Code has not been adopted, it may serve as a reference to good practice even though it has no legal status.

The Code and Commentary are not intended for use in settling disputes between the owner, engineer, architect, contractor, or their agents, subcontractors, material suppliers, or testing agencies. Therefore, the Code cannot define the contract responsibility of each of the parties in usual construction. General references requiring compliance with the Code in the project specifications should be avoided because the contractor is rarely in a position to accept responsibility for design details or construction requirements that depend on a detailed knowledge of the design. Design-build construction contractors, however, typically combine the design and construction responsibility. Generally, the contract documents should contain all of the necessary requirements to ensure compliance with the Code. In part, this can be accomplished by reference to specific Code sections in the project specifications. Other ACI publications, such as "Specifications for Structural Concrete (ACI 301)" are written specifically for use as contract documents for construction.

The Commentary discusses some of the considerations of Committee 318 in developing the provisions contained in the Code. Emphasis is given to the explanation of new or revised provisions that may be unfamiliar to Code users. In addition, comments are included for some items contained in previous editions of the Code to make the present Commentary independent of the previous editions. Comments on specific provisions are made under the corresponding chapter and section numbers of the Code.

The Commentary is not intended to provide a complete historical background concerning the development of the Code, nor is it intended to provide a detailed résumé of the studies and research data reviewed by the committee in formulating the provisions of the Code. However, references to some of the research data are provided for those who wish to study the background material in depth.

The Commentary directs attention to other documents that provide suggestions for carrying out the requirements and intent of the Code. However, those documents and the Commentary are not a part of the Code.

The Commentary is intended for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations, and who will accept responsibility for the application of the information it contains. ACI disclaims any and all responsibility for the stated principles. The Institute shall not be liable for any loss or damage arising therefrom. Reference to the Commentary shall not be made in construction documents. If items found in the Commentary are desired by the licensed design professional to be a part of the contract documents, they shall be restated in mandatory language for incorporation by the licensed design professional.

It is recommended to have the materials, processes, quality control measures, and inspections described in this document tested, monitored, or performed by individuals holding the appropriate ACI Certification or equivalent, when available. The personnel certification programs of the American Concrete Institute and the Post-Tensioning Institute; the plant certification programs of the Precast/Prestressed Concrete Institute, the Post-Tensioning Institute, and the National Ready Mixed Concrete Association; and the Concrete Reinforcing Steel Institute's Voluntary Certification Program for Fusion-Bonded Epoxy Coating Applicator Plants are available for this purpose. In addition, "Standard Specification for Agencies Engaged in Construction Inspection, Testing, or Special Inspection" (ASTM E329-18) specifies performance requirements for inspection and testing agencies.

Design reference materials illustrating applications of the Code requirements are listed and described in the back of this document.

TABLE OF CONTENTS

PART 1: GENERAL

CHAPTER 1 GENERAL

- 1.1—Scope of ACI 318, p. 9
- 1.2-General, p. 9
- 1.3—Purpose, p. 9
- 1.4—Applicability, p. 10
- 1.5—Interpretation, p. 12
- 1.6-Building official, p. 13
- 1.7-Licensed design professional, p. 13
- 1.8—Construction documents and design records, p. 13
- 1.9-Testing and inspection, p. 14
- 1.10—Approval of special systems of design, construction, or alternative construction materials, p. 14

CHAPTER 2 NOTATION AND TERMINOLOGY

- 2.1-Scope, p. 15
- 2.2-Notation, p. 15
- 2.3—Terminology, p. 31

CHAPTER 3 REFERENCED STANDARDS

- 3.1—Scope, p. 47
- 3.2—Referenced standards, p. 47

CHAPTER 4 STRUCTURAL SYSTEM REQUIREMENTS

- 4.1—Scope, p. 51
- 4.2-Materials, p. 51
- 4.3—Design loads, p. 51
- 4.4-Structural system and load paths, p. 52
- 4.5-Structural analysis, p. 54
- 4.6-Strength, p. 55
- 4.7—Serviceability, p. 56
- 4.8—Durability, p. 56
- 4.9-Sustainability, p. 56
- 4.10-Structural integrity, p. 56
- 4.11-Fire resistance, p. 57
- 4.12—Requirements for specific types of construction, p. 57
- 4.13-Construction and inspection, p. 59
- 4.14—Strength evaluation of existing structures, p. 59

PART 2: LOADS & ANALYSIS

CHAPTER 5

- LOADS
- 5.1—Scope, p. 61
- 5.2—General, p. 61
- 5.3-Load factors and combinations, p. 62

CHAPTER 6

STRUCTURAL ANALYSIS

- 6.1—Scope, p. 67
- 6.2—General, p. 67
- 6.3—Modeling assumptions, p. 72
- 6.4—Arrangement of live load, p. 73
- 6.5—Simplified method of analysis for nonprestressed continuous beams and one-way slabs, p. 74
- 6.6—Linear elastic first-order analysis, p. 75
- 6.7—Linear elastic second-order analysis, p. 84
- 6.8—Inelastic analysis, p. 85
- 6.9—Acceptability of finite element analysis, p. 86

PART 3: MEMBERS

CHAPTER 7 ONE-WAY SLABS

- 7.1—Scope, p. 89
- 7.2—General, p. 89
- 7.3—Design limits, p. 89
- 7.4—Required strength, p. 91
- 7.5—Design strength, p. 91
- 7.6—Reinforcement limits, p. 92
- 7.7-Reinforcement detailing, p. 94

CHAPTER 8 TWO-WAY SLABS

- 8.1—Scope, p. 99
- 8.2—General, p. 99
- 8.3—Design limits, p. 100
- 8.4—Required strength, p. 103
- 8.5—Design strength, p. 109
- 8.6—Reinforcement limits, p. 110
- 8.7—Reinforcement detailing, p. 113
- 8.8-Nonprestressed two-way joist systems, p. 125

CHAPTER 9 BEAMS

- 9.1—Scope, p. 127
- 9.2—General, p. 127
- 9.3-Design limits, p. 128
- 9.4—Required strength, p. 130
- 9.5—Design strength, p. 133
- 9.6-Reinforcement limits, p. 135
- 9.7-Reinforcement detailing, p. 139
- 9.8-Nonprestressed one-way joist systems, p. 150
- 9.9—Deep beams, p. 152

CHAPTER 10 COLUMNS

- 10.1—Scope, p. 155
- 10.2-General, p. 155
- 10.3—Design limits, p. 155
- 10.4—Required strength, p. 156
- 10.5—Design strength, p. 157
- 10.6—Reinforcement limits, p. 157
- 10.7-Reinforcement detailing, p. 158

CHAPTER 11 WALLS

- 11.1-Scope, p. 165
- 11.2-General, p. 165
- 11.3—Design limits, p. 166
- 11.4—Required strength, p. 166
- 11.5—Design strength, p. 167
- 11.6-Reinforcement limits, p. 170
- 11.7—Reinforcement detailing, p. 171
- 11.8—Alternative method for out-of-plane slender wall analysis, p. 172

CHAPTER 12 DIAPHRAGMS

- 12.1—Scope, p. 175
- 12.2—General, p. 176
- 12.3—Design limits, p. 177
- 12.4—Required strength, p. 178
- 12.5—Design strength, p. 181
- 12.6—Reinforcement limits, p. 188
- 12.7—Reinforcement detailing, p. 188

CHAPTER 13 FOUNDATIONS

- 13.1-Scope, p. 191
- 13.2—General, p. 193
- 13.3—Shallow foundations, p. 197
- 13.4—Deep foundations, p. 199

CHAPTER 14

PLAIN CONCRETE 14.1—Scope, p. 203

- 14.2—General, p. 204
- 14.3—Design limits, p. 204
- 14.4—Required strength, p. 206
- 14.5—Design strength, p. 207
- 14.6-Reinforcement detailing, p. 210

PART 4: JOINTS/CONNECTIONS/ANCHORS

CHAPTER 15

BEAM-COLUMN AND SLAB-COLUMN JOINTS

- 15.1—Scope, p. 211
- 15.2—General, p. 211
- 15.3—Detailing of joints, p. 212
- 15.4—Strength requirements for beam-column joints, p. 213
- 15.5—Transfer of column axial force through the floor system, p. 214

CHAPTER 16

CONNECTIONS BETWEEN MEMBERS

- 16.1—Scope, p. 217
- 16.2-Connections of precast members, p. 217
- 16.3-Connections to foundations, p. 222
- 16.4—Horizontal shear transfer in composite concrete flexural members, p. 225
- 16.5-Brackets and corbels, p. 227

CHAPTER 17

ANCHORING TO CONCRETE

- 17.1—Scope, p. 233
- 17.2-General, p. 234
- 17.3—Design Limits, p. 235
- 17.4-Required strength, p. 236
- 17.5—Design strength, p. 236
- 17.6—Tensile strength, p. 246
- 17.7—Shear strength, p. 261
- 17.8-Tension and shear interaction, p. 270
- 17.9—Edge distances, spacings, and thicknesses to preclude splitting failure, p. 270
- 17.10—Earthquake-resistant anchor design requirements, p. 272
- 17.11-Attachments with shear lugs, p. 277

PART 5: EARTHQUAKE RESISTANCE

CHAPTER 18

EARTHQUAKE-RESISTANT STRUCTURES

- 18.1—Scope, p. 285
- 18.2—General, p. 285
- 18.3—Ordinary moment frames, p. 291
- 18.4—Intermediate moment frames, p. 292
- 18.5—Intermediate precast structural walls, p. 299
- 18.6—Beams of special moment frames, p. 299
- 18.7-Columns of special moment frames, p. 305
- 18.8—Joints of special moment frames, p. 311
- 18.9—Special moment frames constructed using precast concrete, p. 314
- 18.10-Special structural walls, p. 317
- 18.11—Special structural walls constructed using precast concrete, p. 336
- 18.12-Diaphragms and trusses, p. 336
- 18.13-Foundations, p. 343
- 18.14—Members not designated as part of the seismicforce-resisting system, p. 351

PART 6: MATERIALS & DURABILITY

CHAPTER 19 CONCRETE: DESIGN AND DURABILITY

REQUIREMENTS

- 19.1—Scope, p. 355
- 19.2—Concrete design properties, p. 355
- 19.3—Concrete durability requirements, p. 357
- 19.4—Grout durability requirements, p. 369

CHAPTER 20

STEEL REINFORCEMENT PROPERTIES, DURABILITY, AND EMBEDMENTS

- 20.1—Scope, p. 371
- 20.2—Nonprestressed bars and wires, p. 371
- 20.3—Prestressing strands, wires, and bars, p. 378
- 20.4-Headed shear stud reinforcement, p. 382
- 20.5-Provisions for durability of steel reinforcement, p. 382
- 20.6-Embedments, p. 390

PART 7: STRENGTH & SERVICEABILITY

CHAPTER 21 STRENGTH REDUCTION FACTORS

- 21.1-Scope, p. 391
- 21.2—Strength reduction factors for structural concrete members and connections, p. 391

CHAPTER 22

SECTIONAL STRENGTH

- 22.1—Scope, p. 397
- 22.2—Design assumptions for moment and axial strength, p. 397
- 22.3-Flexural strength, p. 399
- 22.4—Axial strength or combined flexural and axial strength, p. 400
- 22.5-One-way shear strength, p. 401
- 22.6—Two-way shear strength, p. 411
- 22.7—Torsional strength, p. 420
- 22.8-Bearing, p. 428
- 22.9—Shear friction, p. 430

CHAPTER 23

STRUT-AND-TIE METHOD

- 23.1—Scope, p. 435
- 23.2-General, p. 436
- 23.3—Design strength, p. 443
- 23.4—Strength of struts, p. 443
- 23.5-Minimum distributed reinforcement, p. 445
- 23.6—Strut reinforcement detailing, p. 446
- 23.7-Strength of ties, p. 447
- 23.8—Tie reinforcement detailing, p. 447
- 23.9—Strength of nodal zones, p. 448
- 23.10-Curved-bar nodes, p. 449
- 23.11—Earthquake-resistant design using the strut-and-tie method, p. 452

CHAPTER 24 SERVICEABILITY

- 24.1—Scope, p. 455
- 24.2-Deflections due to service-level gravity loads, p. 455
- 24.3—Distribution of flexural reinforcement in one-way slabs and beams, p. 460
- 24.4—Shrinkage and temperature reinforcement, p. 461
- 24.5—Permissible stresses in prestressed concrete flexural members, p. 463

PART 8: REINFORCEMENT

CHAPTER 25

REINFORCEMENT DETAILS

- 25.1—Scope, p. 467
- 25.2—Minimum spacing of reinforcement, p. 467
- 25.3—Standard hooks, seismic hooks, crossties, and minimum inside bend diameters, p. 469
- 25.4—Development of reinforcement, p. 471
- 25.5-Splices, p. 488
- 25.6—Bundled reinforcement, p. 493
- 25.7—Transverse reinforcement, p. 494
- 25.8—Post-tensioning anchorages and couplers, p. 504
- 25.9—Anchorage zones for post-tensioned tendons, p. 505

PART 9: CONSTRUCTION

CHAPTER 26

CONSTRUCTION DOCUMENTS AND INSPECTION

- 26.1-Scope, p. 515
- 26.2—Design criteria, p. 516
- 26.3-Member information, p. 517
- 26.4—Concrete materials and mixture requirements, p. 517
- 26.5—Concrete production and construction, p. 528
- 26.6—Reinforcement materials and construction requirements, p. 535
- 26.7—Anchoring to concrete, p. 540
- 26.8-Embedments, p. 542
- 26.9—Additional requirements for precast concrete, p. 543
- 26.10—Additional requirements for prestressed concrete, p. 544
- 26.11-Formwork, p. 546
- 26.12—Evaluation and acceptance of hardened concrete, p. 548
- 26.13-Inspection, p. 554

PART 10: EVALUATION

CHAPTER 27 STRENGTH EVALUATION OF EXISTING STRUCTURES

- 27.1-Scope, p. 559
- 27.2-General, p. 559
- 27.3—Analytical strength evaluation, p. 560
- 27.4-Strength evaluation by load test, p. 561
- 27.5-Monotonic load test procedure, p. 562
- 27.6—Cyclic load test procedure, p. 564

APPENDICES & REFERENCES

APPENDIX A

DESIGN VERIFICATION USING NONLINEAR RESPONSE HISTORY ANALYSIS

- A.1-Notation and terminology, p. 567
- A.2—Scope, p. 567
- A.3-General, p. 568
- A.4-Earthquake ground motions, p. 568
- A.5-Load factors and combinations, p. 569
- A.6-Modeling and analysis, p. 569
- A.7-Action classification and criticality, p. 570
- A.8-Effective stiffness, p. 571
- A.9-Expected material strength, p. 573
- A.10—Acceptance criteria for deformation-controlled actions, p. 574
- A.11—Expected strength for force-controlled actions, p. 576
- A.12—Enhanced detailing requirements, p. 577
- A.13—Independent structural design review, p. 578

APPENDIX B

STEEL REINFORCEMENT INFORMATION

APPENDIX C

EQUIVALENCE BETWEEN SI-METRIC, MKS-METRIC, AND U.S. CUSTOMARY UNITS OF NONHOMOGENOUS EQUATIONS IN THE CODE

COMMENTARY REFERENCES

INDEX

CHAPTER 1—GENERAL

CODE

1.1—Scope of ACI 318

1.1.1 This chapter addresses (a) through (h):

(a) General requirements of this Code

(b) Purpose of this Code

(c) Applicability of this Code

(d) Interpretation of this Code

(e) Definition and role of the building official and the

licensed design professional

(f) Construction documents

(g) Testing and inspection

(h) Approval of special systems of design, construction, or alternative construction materials

1.2—General

1.2.1 ACI 318, "Building Code Requirements for Structural Concrete," is hereafter referred to as "this Code."

1.2.2 In this Code, the general building code refers to the building code adopted in a jurisdiction. When adopted, this Code forms part of the general building code.

1.2.3 The official version of this Code is the English language version, using inch-pound units, published by the American Concrete Institute.

1.2.4 In case of conflict between the official version of this Code and other versions of this Code, the official version governs.

1.2.5 This Code provides minimum requirements for the materials, design, construction, and strength evaluation of structural concrete members and systems in any structure designed and constructed under the requirements of the general building code.

1.2.6 Modifications to this Code that are adopted by a particular jurisdiction are part of the laws of that jurisdiction, but are not a part of this Code.

1.2.7 If no general building code is adopted, this Code provides minimum requirements for the materials, design, construction, and strength evaluation of members and systems in any structure within the scope of this Code.

1.3—Purpose

1.3.1 The purpose of this Code is to provide for public health and safety by establishing minimum requirements for

COMMENTARY

R1.1—Scope of ACI 318

R1.1.1 This Code includes provisions for the design of concrete used for structural purposes, including plain concrete; concrete containing nonprestressed reinforcement, prestressed reinforcement, or both; and anchoring to concrete. This chapter includes a number of provisions that explain where this Code applies and how it is to be interpreted.

R1.2—General

R1.2.2 The American Concrete Institute recommends that this Code be adopted in its entirety.

R1.2.3 Committee 318 develops the Code in English, using inch-pound units. Based on that version, Committee 318 approved three other versions:

(a) In English using SI units (ACI 318M)(b) In Spanish using SI units (ACI 318S)

Jurisdictions may adopt ACI 318, ACI 318M, and ACI 318S.

R1.2.5 This Code provides minimum requirements and exceeding these minimum requirements is not a violation of the Code.

The licensed design professional may specify project requirements that exceed the minimum requirements of this Code.

R1.3—Purpose

R1.3.1 This Code provides a means of establishing minimum requirements for the design and construction of

10

CODE

strength, stability, serviceability, durability, and integrity of concrete structures.

1.3.2 This Code does not address all design considerations.

1.3.3 Construction means and methods are not addressed in this Code.

1.4—Applicability

1.4.1 This Code shall apply to concrete structures designed and constructed under the requirements of the general building code.

1.4.2 Provisions of this Code shall be permitted to be used for the assessment, repair, and rehabilitation of existing structures.

1.4.3 Applicable provisions of this Code shall be permitted to be used for structures not governed by the general building code.

1.4.4 The design of thin shells and folded plate concrete structures shall be in accordance with ACI 318.2, "Building Code Requirements for Concrete Thin Shells."

1.4.5 This Code shall apply to the design of slabs cast on stay-in-place, noncomposite steel decks.

COMMENTARY

structural concrete, as well as for acceptance of design and construction of concrete structures by the building officials or their designated representatives.

This Code does not provide a comprehensive statement of all duties of all parties to a contract or all requirements of a contract for a project constructed under this Code.

R1.3.2 The minimum requirements in this Code do not replace sound professional judgment or the licensed design professional's knowledge of the specific factors surrounding a project, its design, the project site, and other specific or unusual circumstances to the project.

R1.4—Applicability

R1.4.2 Specific provisions for assessment, repair, and rehabilitation of existing concrete structures are provided in ACI CODE-562-21. Existing structures in ACI 562 are defined as structures that are complete and permitted for use.

R1.4.3 Structures such as arches, bins and silos, blastresistant structures, chimneys, underground utility structures, gravity walls, and shielding walls involve design and construction requirements that are not specifically addressed by this Code. Many Code provisions, however, such as concrete quality and design principles, are applicable for these structures. Recommendations for design and construction of some of these structures are given in the following:

- "Code Requirements for Reinforced Concrete Chimneys and Commentary" (ACI 307-08)
- "Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials" (ACI 313-97)
- "Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary" (ACI 349)
- "ASME BPVC Section III Rules for Construction of Nuclear Facility Components – Division 2 – Code for Concrete Containments"

R1.4.5 In its most basic application, the noncomposite steel deck serves as a form, and the concrete slab is designed to resist all loads, while in other applications the concrete slab may be designed to resist only the superimposed loads. The design of a steel deck in a load-resisting application is given in "Standard for Steel Deck" (SD). The SDI standard

CODE

1.4.6 For one- and two-family dwellings, multiple singlefamily dwellings, townhouses, and accessory structures to these types of dwellings, the design and construction of castin-place footings, foundation walls, and slabs-on-ground in accordance with ACI 332 shall be permitted.

1.4.7 This Code does not apply to the design and installation of concrete piles, drilled piers, and caissons embedded in ground, except as provided in (a) through (c):

(a) For portions of deep foundation members in air or water, or in soil incapable of providing adequate lateral restraint to prevent buckling throughout their length
(b) For precast concrete piles supporting structures assigned to Seismic Design Categories A and B (13.4)
(c) For deep foundation elements supporting structures assigned to Seismic Design Categories C, D, E, and F (Ch. 13, 18.13)

1.4.8 This Code does not apply to design and construction of slabs-on-ground, unless the slab transmits vertical loads or lateral forces from other portions of the structure to the soil.

1.4.9 This Code does not apply to the design and construction of tanks and reservoirs.

1.4.10 This Code does not apply to composite design slabs cast on stay-in-place composite steel deck. Concrete used in the construction of such slabs shall be governed by this Code, where applicable. Portions of such slabs designed as reinforced concrete are governed by this Code.

COMMENTARY

refers to this Code for the design and construction of the structural concrete slab.

R1.4.6 ACI 332 addresses only the design and construction of cast-in-place footings, foundation walls supported on continuous footings, and slabs-on-ground for limited residential construction applications.

The 2021 IBC requires design and construction of residential post-tensioned slabs on expansive soils to be in accordance with PTI DC10.5, which provides requirements for slab-on-ground foundations, including soil investigation, design, and analysis. Guidance for the design and construction of post-tensioned slabs-on-ground that are not on expansive soils can be found in ACI 360R. Refer to R1.4.8.

R1.4.7 The design and installation of concrete piles fully embedded in the ground is regulated by the general building code. The 2019 edition of the Code contains some provisions that previously were only available in the general building code. In addition to the provisions in this Code, recommendations for concrete piles are given in ACI 543R, recommendations for drilled piers are given in ACI 336.3R, and recommendations for precast prestressed concrete piles are given in "Recommended Practice for Design, Manufacture, and Installation of Prestressed Concrete Piling" (PCI 1993). Requirements for the design and construction of micropiles are not specifically addressed by this Code.

R1.4.8 Detailed recommendations for design and construction of slabs-on-ground and floors that do not transmit vertical loads or lateral forces from other portions of the structure to the soil are given in ACI 360R. This guide presents information on the design of slabs-on-ground, primarily industrial floors and the slabs adjacent to them. The guide addresses the planning, design, and detailing of the slabs. Background information on the design theories is followed by discussion of the soil support system, loadings, and types of slabs. Design methods are given for structural plain concrete, reinforced concrete, shrinkage-compensating concrete, and post-tensioned concrete slabs.

R1.4.9 Requirements and recommendations for the design and construction of tanks and reservoirs are given in ACI 350, ACI 334.1R, and ACI 372R.

R1.4.10 In this type of construction, the steel deck serves as the positive moment reinforcement. The design and construction of concrete-steel deck slabs is described in "Standard for Steel Deck" (SD). The standard refers to the appropriate portions of this Code for the design and construction of the concrete portion of the composite assembly. SD also provides guidance for design of composite-concretesteel deck slabs. The design of negative moment reinforcement to create continuity at supports is a common example General

11

