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Specimen NTW1

• 4 stories

• Continuous reinforcement 
over height

• Reinforcement 
concentrated in boundary 
elements

• Confinement spacing 
relaxed from ACI 318-02 
(consistent with 
ACI 318-11)
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Specimen NTW2

• 2 stories

• Lap splices above 
first floor level

• Uniformly distributed 
longitudinal steel in 
flange

• Expanded confined 
region

Concentrated long. steel:
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Distributed long. steel:  

(28) #4 + (12) #5 @ 35
8"

Code-required limit 
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Instructional Materials Complementing FEMA 451
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Occupancy

Life 
Safety

Collapse 
Prevention

Performance Level

Damage State & Needed Repair

Engineering Limit State

Threshold strain/drift/etc. related to crack size, 
spalling, crushing, bar buckling or fracture

Existing Modeling Tools

• Simplified Models
– FEMA 356/ASCE 41 Supplement 1

– Hines Bridge Pier Model

• Other Models
– Waugh & Aaletti OpenSees Wall Model

– Other finite-element-based approaches
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• Introduction

• Simplified Modeling Procedure
– Load vs. Deflection Relationship

– Prediction of Damage States

• Validation

• Recommendations
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Desired Capabilities of Procedure

• Appropriate for general design use
• More precise than FEMA 356/ASCE 41 Supp. 1
• Applicable to any flexural wall geometry (i.e. 

rectangular or flanged, height, length)
• Not sensitive to particular detailing (i.e. , 

distributed or concentrated reinforcement, 
splices, confinement)

• Applicable to any loading direction, orthogonal 
or skew

• Transparent procedure, additional terms can be 
incorporated

F-S-SP Integration Model

• Based on flexural sectional analysis

• Flexural Component
– Integrate M- twice

• Shear Component
– Calculated from cracked shear stiffness & 

flexural stiffness

• Strain Penetration Component
– Calculated from longitudinal strains at base

Flexural Component of 
Deformation

• Section analysis calculates M-
relationship

• Integrate twice over height of specimen to 
get P- for flexural deformations

• Assumes plane sections remain plane
– Neglects shear lag in flanged walls

– Neglects tension shifting

• Challenges with post-peak behavior

Effectiveness of Model

Flexural Displacement at 4th story
Web Direction
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Flexural Displacement at 1st story
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Proposed Method

• v=C*f or =C*
• Use cracked shear stiffness & flexural stiffness 

at yield to define proportional relationship

for 45° cracks

• C =                   z = shear span
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Effectiveness of Model

FC v = *51.3 in.

FT v = *61.2 in.

Strain Penetration
• Assume plane sections 

remain plane

• Assume behavior in 
tension and compression 
similar
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Proposed Method

• Assume constant bond length & strain gradient
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Effectiveness of Model

Rotation due to Strain Penetration
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Prediction of Damage Levels

Damage
Performance 

Level
Required Repair Local EDP Threshold Value

Negligible None
Steel tensile 
strain

s<3.5y conc. steel
s<7y dist. steel

Minimum
Immediate 
Occupancy

Epoxy injection of cracks
Steel tensile 
strain

s>3.5y conc. steel
s>7y dist. steel

Minimal
Patching of concrete 
cover and epoxy 
injection of cracks

Cover concrete 
compressive 
strain

c> 2f'c/Ec or 0.003

Moderate Life Safety
Replacement of 
concrete cover and 
epoxy injection of cracks

Core concrete 
compressive 
strain

c>4kf'c/Ec

Significant
Collapse 

Prevention
Replacement of section

Model indicates 
post-peak loss of 
capacity

FEMA 356, ATC 58-2, etc.

Berry, Lehman, & Lowes (2008) NTW1 & NTW2,
RW1, RW2, & RW3
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Model Validation
• Comparison to NTW1 & NTW2
• Comparison to results of 6 tests reported 

in literature
• Comparison to FEMA 356/ASCE 41 

Supplement 1 & Hines models
• All validation based on reported as-built 

material properties
• In general

– Moment capacity predicted within 5% in all cases
– Displacement capacity typ. underpredicted 5 to 40%

Sections Used for Validation

• Johnson (2 walls)
h/l=2.7

• Wallace
h/l=3.0

• Sittipunt & Wood
h/l=3.0

Sections Used for Validation

• Hines (2 piers)
h/l=2.6

NTW2 WD - Whole Structure
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FEMA 356/ASCE 41 Supp. 1

NTW1 WD - whole structure
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Evaluation of Proposed Model
NTW1 Flange Direction

• Load capacity within 3%

• Underestimates drift capacity

NTW1 FD First Story
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NTW1 FD  - Whole Structure
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Summary of Model

• Takes advantage of relative ease of modeling 
flexure

• Applicable to more generalized cases than 
existing simplified tools

• More accurate than existing simplified tools
• Provides framework for predicting damage 

levels
• Validated using results of tests with aspect ratios 

of 2.5 to 3.0
• Does not track damage due to prior load history

Possible Modifications to
F-S-SP Integration Model

• Calibration of threshold strains for damage 
prediction using larger data set

• Incorporate shear lag effects

• Add “artificial” plastic hinge length to 
represent tension shifting

• Improve prediction of post-peak behavior

• Refine shear crack angle prediction

• Refine strain penetration model

Questions?

Measured vs. Predicted Curvature

Confined region 
degrading

Bars buckling

Potential Implications of Neglecting 
Tension Shifting
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Variation in Crack Angle

• General relationships can be established 
for crack angle; reliable prediction is 
difficult
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Lap Splices 
Outside Plastic Hinge Region

• Splices in 2nd story did not slip during testing
Rectangular wall with lap splices at base

Lap Splices 
Outside Plastic Hinge Region

• Splices in 2nd story did not slip during testing

• Lap splices did interrupt yielding

• Neglecting splice

increases 

flexibility ~1-2%

OR

• Use a 2nd model

with double steel for

lap region

y

Effectiveness of Flexural Model 
with Lap Splices

NTW2 WD - Whole Structure
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Evaluation of Proposed Model
NTW2 Web Direction

• Load capacity within 0.5%

• Underestimates drift capacity
NTW2 WD - Whole Structure
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NTW2 WD - First Story
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Evaluation of Proposed Model
NTW2 Flange Direction

• Load capacity within 3%

• Underestimates drift capacity

NTW2 FD - Whole Structure
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Hines Bridge Pier Model

• Modeling of bridge piers based on 
sectional analysis

• Limited to cantilevers loaded at tip

• Results only at tip

• Assumes relationship between flexure and 
shear/strain penetration

• Includes tension shifting term

Comparison to Hines Model

NTW1 WD - whole structure
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Key Contributions
Performance Based Engineering

• Developed simplified pushover model 
appropriate for routine design use

• Model separates contributions of flexure, 
shear, and strain penetration

• Established thresholds linking significant 
damage levels to local strains

Shear and Flexure Interaction

• Previous researchers have reported a 
linear relationship between deformation 
components at tip of specimen

Observed relationship between measured deformations at top of 4th story 
attributed to flexure and shear at ramp peaks, specimen NTW1
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Comparision of Bar Slip Models
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Zhao & Sritharan 2007

Lowes & Altoontash 2003

F-S-SP integration model

Evaluation of Proposed Model
NTW1 Web Direction

• Load capacity within 2%

• Overestimates drift capacity (exceptional case)

NTW1 WD - whole structure
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NTW1 WD - first story
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FEMA 356 model
• Modeling of flexure-controlled walls based 

on elastic flexural stiffness, yield moment, 
prescribed inelastic drift capacity

• Thought to be very conservative

Py

40%Py

y/h

Load

Drift=/h

0.010

0.015

Life Safety
Immediate 
Occupancy

Collapse 
Prevention

Estimating slip

• Bar “slip” is found by integrating strain over anchorage length

• Simplified procedure
– Assume bond length constant regardless of applied bar stress

– Assume strain gradient constant over anchorage length

More detailed model (i.e., 
Lowes & Altoontash)

P<Py P>Py

ss

Simplified model

P<Py P>Py

al
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Shear and Flexure Interaction

• Profile of shear 
deformation similar 
to profile of rotation 
over height

• =C*or v=C*f

Comparison of Curvature and Shear Strain 
Distributions at Peak 52, 150% nominal yield 

displacement, Flange in Compression
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Performance-Based Design

Statistically-based 
expectation of 
seismic events

Model of 
Structure

Performance 
expectation for 

each design option

Multiple 
design options

Recommendation 
to building owner

Cost analysis 
over entire 
building life


