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Introduction and Background
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Force Diagram of Subsurface Walls - Static 
Conditions
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Force Diagram of Subsurface Walls – Seismic 
Without Movement

ground surface

groundwater

Base Friction = m N , where N = W - U - V

+ Base adhesion

Applicable loads

at-rest earth pressure

surcharge stress from surface loading

compaction stresses from Duncan's method (1991 and 1993)

U = buoyancy due to water table

V = vertical seismic force

N = normal stress along basemat

base friction using interface coefficient, m 

traction = friction along building sides = at-rest pressure x msides

msides = friction coefficient along sidewalls of structure

seismic increment = horizontal base forces from SASSI output include all driving forces,

 composed of those from seismic, at-rest, and building inertia

Sliding check Compare SASSI basemat horizontal forces (Demand = D) 

against basemat frictional/adhesional resistance (Capacity = C).

If FS = C/D   1.1, then building is stable against sliding
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Force Diagram of Subsurface Walls – Seismic 
With Movement

ground surface

groundwater

Base Friction = m N  (m reduced 25%)

where N = W - U - V

+ Base adhesion

Applicable loads

resisting earth pressure is dependent on amount of movement

surcharge stress from surface loading

U = buoyancy due to water table

V = vertical seismic force

N = normal stress along basemat
reduced base friction using interface coefficient, mred 

reduced traction = friction along building sides = at-rest pressure x msides_red

msides_red = reduced friction coefficient along sidewalls of structure

seismic increment = horizontal base forces from SASSI output include all driving forces,

 composed of those from seismic, at-rest, and building inertia

Sliding check Compare SASSI basemat horizontal driving forces (Demand = D) 

against basemat friction/adhesion + side friction + passive resistance (Capacity = C) 

using reduced resistance coefficients for frictional/adhesional components

If FS = C/D   1.1, then building is stable against further sliding
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Standard Practice for Partially or Fully
Buried Liquid-containing Structures
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Total Base Shear and Wall Pressures
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Practical Earth Pressure Analysis

 Select all potential critical interface combinations at the 
base and sides of the structure on which to determine the 
minimum base frictional resistance.

 Compare base and side frictional resistance to seismic at-
rest demand.  If C/D > 1.0, then use seismic at-rest 
demand to design walls.  

 If the C/D < FS, then sliding will occur.  Then reduce base 
and side friction coefficients by 25%. loading side of the 
structure will be subject to the active earth pressure, the 
seismic lateral active earth pressure increment, and the 
building inertia.  Increase resisting load on the passive 
side, until C/D ≥ 1.0.
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Sliding or wall rotation must occur for K < K0
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Hydrodynamic Pressures (ACI 350)
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Seismic Active and At-Rest Lateral Earth 
Pressure

𝐾𝐴𝐸 =
𝑐𝑜𝑠2(𝜙 − 𝜃 − 𝛽)

cos𝜃 cos2𝜷cos(𝛽 + 𝜃 + 𝛿) 1 +
sin 𝜙 + 𝛿 sin(𝜙 − 𝜃 − 𝑖)
cos(𝛽 + 𝜃 + 𝛿) ∗ cos(𝑖 − 𝛽)

𝟐 𝜽 = tan−1
𝑘ℎ

1 − 𝑘𝑣

PAE = 0.5gH2(KA+DKAE) pAD = DKAE·g·(H-z) p0D = 2DKAE·g·(H-z)

NCHRP 611

DKAE~0.75kh



Dynamic Earth pressures - Myths, Realities and Practical Ways for Design : October 2012

Dynamic Soil Pressures ASCE 4-98 
(Wood 1973)
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Soil Pressures Sample Calculation

EL 0’

EL -5’

EL -20’

 = 320

g = 120 pcf

Kh = 0.25

249 (498) psf

147 (294) psf

0 psf

0 psf

186 (300) psf

454 (732) psf 936 psf 1390 (1668) psf

249 (498) psf

333 (594) psf

0’

-5’

-20’

Static Earth Pressure Seismic Earth Pressure Hydrostatic Pressure Total Pressure

H = 20 ft.

q = tan-1(0.25) = 14o

KAE = = 0.48

KA = 0.31

DKAE = 0.48-0.31 = 0.17

DKAE ~ 3/4·0.25 = 0.1875, use 0.17

gmoist = 120 pcf

gsub = 120-62.4 = 57.6 pcf

K0S = 1-sin(32o) = 0.47, use K0S = 0.5

DK0E = 2DKAE = 2·0.17 = 0.34
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Ground Water Considerations

 if the backfill is well drained, seismic ground water 
pressures need not be considered.  In this case, 
only hydrostatic pressures are taken into 
consideration:

pW = gWz

Whitman, RV (1990) suggests that the seismic ground 
water thrust exceeds 35% of the hydrostatic thrust for 
kh>0.3g.
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Influence of Wall Movement on Intensity of 
Earth Pressures in Cohesionless Materials 

ground surface

groundwater

Base Friction = m N  (m reduced 25%)

where N = W - U - V

+ Base adhesion

Applicable loads

resisting earth pressure is dependent on amount of movement

surcharge stress from surface loading

U = buoyancy due to water table

V = vertical seismic force

N = normal stress along basemat
reduced base friction using interface coefficient, mred 

reduced traction = friction along building sides = at-rest pressure x msides_red

msides_red = reduced friction coefficient along sidewalls of structure

seismic increment = horizontal base forces from SASSI output include all driving forces,

 composed of those from seismic, at-rest, and building inertia

Sliding check Compare SASSI basemat horizontal driving forces (Demand = D) 

against basemat friction/adhesion + side friction + passive resistance (Capacity = C) 

using reduced resistance coefficients for frictional/adhesional components

If FS = C/D   1.1, then building is stable against further sliding
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traction = friction along building sides = at-rest pressure x msides

msides = friction coefficient along sidewalls of structure

seismic increment = horizontal base forces from SASSI output include all driving forces,

 composed of those from seismic, at-rest, and building inertia
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Experimental Results
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Recent Experimental Studies  (PEER 2007/06)

Stiff and flexible model structures configuration

Centrifuge model configuration

L. Atik and N. Sitar (2007)
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Representative Experimental Results

L. Atik and N. Sitar (2007)
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Maximum total dynamic pressure 
distributions measured and estimated 

L. Atik and N. Sitar (2007)



Detailed Seismic Fluid Soil Structure 
Interaction
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Fluid Structure Interaction
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Seismic Soil Structure Interaction

(SASSI2010 Theory Manual)

Substructuring in the Flexible Volume Method Substructuring in the Substructure Subtraction Method 



Dynamic Earth pressures - Myths, Realities and Practical Ways for Design : October 2012

Case Study: Intake Pump Station



Dynamic Earth pressures - Myths, Realities and Practical Ways for Design : October 2012

Structure Geometry
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Overall Analysis/Design Approach

 The finite element model of the structures is developed 
using GT STRUDL Version 29.1.

 Lumped Mass is used to model the Hydrodynamic Load.   

 The SSI analysis is performed using Site-Specific Input 
Ground Motion and three soil cases (UB, BE and LB). 

 The FE model used for the SSI analysis is modified to 
obtain the static response of the structure, using GT 
STRUDL. 

 Only critical panels are designed. Microsoft Excel 
Workbook is used to combine element forces and 
moments from static and SSI analyses, for these critical 
panels. 
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Finite Element Model, Showing Critical Panels
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Hydrodynamic loads

(a) Actual distribution (b) Idealized distribution
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Comparison of Acceleration Transfer 
Functions

EQz

EQy

EQx
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SSI Model
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Sample Results
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Design of Walls and Slabs

a. Design for In-plane shear using full section cuts.

b. Design vertical and horizontal sections for out-of-plane 
moments and axial forces using a P-M interaction 
analysis.  

c. Conservatively add the reinforcement from steps a and b 

d. Check out-of-plane shear for the whole wall, or whole 
segments on either side of openings, based on average 
shear.

e. Check for punching shear where required.

Forces and moments computed after combination of seismic 
and static results are used for the design of each critical 
panel, using a Microsoft Excel Workbook, as outlined next 
and described in detail later.
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Design of Walls and Slabs
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Conclusions

Simplified and detailed approached for the dynamic 
analysis of embedded liquid containing structures 
where presented. Conclusions and recommendations 
are as follows:

 Additional guidelines are required for the calculations 
of dynamic earth pressures. In particular regarding 
the use of active or at rest dynamic soil pressures.

 Detailed soil structure interaction analyses can 
provide additional inside regarding the behavior of 
embedded liquid containing structures. However they 
are only warranted for critical structures.



Thank You!


