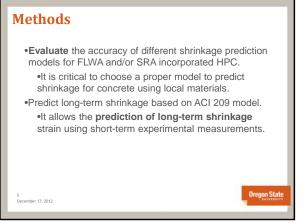
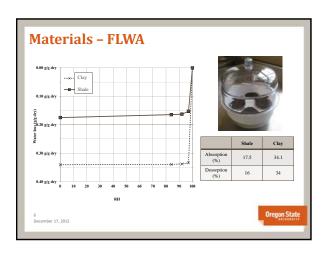
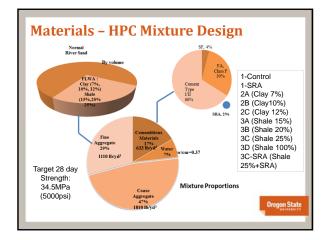

aci

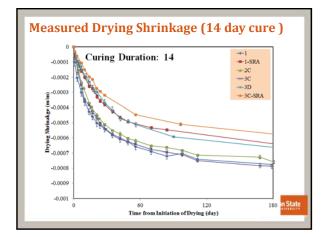
Prediction of Drying Shrinkage For Internally Cured High-Performance Concrete

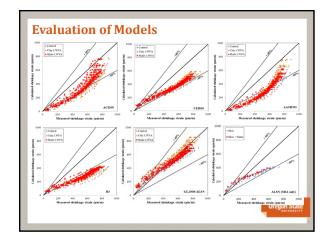

Tengfel Fu Ph.D. Candidate Tyler Deboott Faculty Research Assistant Jason H. Ideker, Ph.D. Assistant Professor and Kearney Faculty Scholz

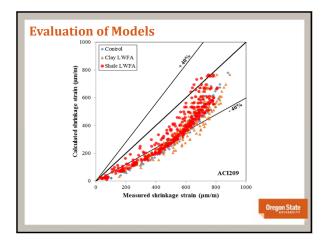

Oct 23rd ,2012 ACI Fall 2012, Toronto, Canada

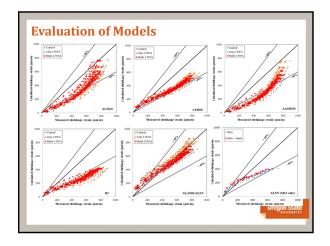

Project Goals

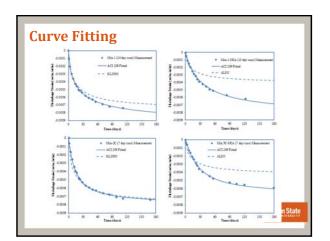
- Investigate the effectiveness of the incorporation of pre-wetted FLWA and SRA in terms of reducing drying shrinkage and external curing duration;
- Identify a drying shrinkage threshold criteria for HPC bridge deck to ensure high crackingresistance concrete
- Develop a simple testing procedure which can be easily used by contractors or materials suppliers to evaluate the cracking-resistant performance











Drying Shrinkage ACI-209 Model Features of Drying Shrinkage development curve: Monotonic increasing; $\varepsilon_{sh}(t,t_c) = \frac{(t-t_c)^{\alpha}}{f+(t-t_c)^{\alpha}} \cdot \varepsilon_{shu}$ · Increasing rate slows down in time; • Should have a theoretical ultimate value. $\varepsilon_{shu} = 780\gamma_{sh} \times 10^{-6} mm/mm \ (in/in)$ (converge to an asymptote). $$\begin{split} \epsilon_{ah}(t,t_2) &= \text{shrinkage strain at concrete age t since the start of drying at \\ &= age t_s, mn/mm (in/in); \\ \epsilon_{ahu} &= ultimate shrinkage strain, mm/mm (in/in); \\ a_f &= constants defining the shape of time-dependent curve; \\ y_{ah} &= the cumulative product of the applicable correction factors including initial moist curing duration, ambient relative humidity, size of the drying specimen in terms of the volume-surface ratio, and fresh concerte properties. \end{split}$$ Thus, a good prediction model should: • Good description of the time function; · Converge to an asymptote; · Easy to use. concrete properties/ Oregon State Oregon State

elected cut- ff date and 180 day 4.4%
4.4%
3.5%
-7.7%
-3.8%
-2.4%
-1.2%
-4.5%
3.5%
-1.3%
-

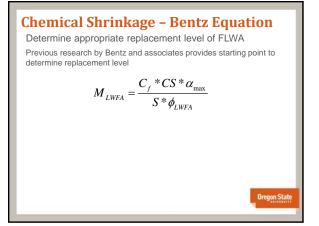
Proposed Procedure • Perform ASTM C157 test . After 28 days of drying, perform curve fitting to all data at hand using ACI full equation, determine the three parameters ($\varepsilon_{sh} \alpha$, and f); Keep tracking the shrinkage development till the fitted ε_{sh} is stable at certain drying period (cut-off time), take the last fitted ε_{sh} as the ultimate shrinkage value; Cut-off time in this research:

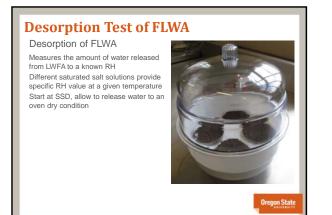
- 50 day for HPC;
- 50 day for HPC with FLWA;
- 90 day for HPC with SRA.

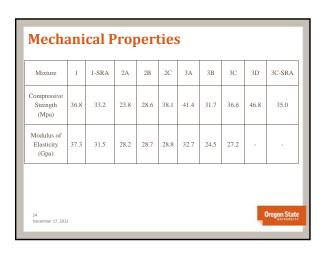
Oregon State

Conclusions

- · SRA effectively reduced drying shrinkage, and synergy with FLWA worked best;
- To achieve less drying shrinkage in the long term, a higher FLWA replacement ratio is needed;
- It is possible to predict long term shrinkage, using ACI 209 model, based on short term (50~90 days) shrinkage measurement (ASTM C157).


Oregon State


Future Work Collect more data to verify the proposed procedure; Understand the physical mechanism of drying shrinkage; Understand the mathematical feature behind the ACI 209 model to stop the test at the minimum age and predict reasonably accurate long-term drying shrinkage; Incorporate this model in the drying shrinkage limits criterions; ASTM C1581 (Ring) Test.


Oregon State

