

American Concrete Institute® Advancing concrete knowledge

Quality Control and Robustness of SCC, Part 1

ACI Spring 2012 Convention March 18 – 21, Dallas, TX

Kamal H. Khayat joined the Missouri S&T faculty in August of 2011 as the Vernon and Maralee Jones Professor of Civil Engineering and Director of the Center for Infrastructure Engineering Studies and Center for Transportation Infrastructure and Safety.

Dr. Khayat was Professor in the Department of Civil Engineering at the Universite de Sherbrooke in Quebec, Canada. During his 21 years there, he served as the Director of the Center of Excellence on Concrete

Infrastructure Engineering and Head of the Integrated Research Laboratory in Valorization of Innovating and Durable Materials and Structures. He received his B.S., M.Eng., and M.S. in civil engineering with emphasis in structural engineering, construction engineering and management and a Ph.D.

structural engineering, construction engineering and management and a Ph.D. in civil engineering with emphasis in civil engineering materials, all from the University of California at Berkeley. This was followed by a post-doctoral fellowship at the same institute.

Dr. Khayat is active on several technical and code committees, including Chair of ACI 237 and RILEM Technical Committee 228. He served as member of the Canadian Standards Association Committee A23.1/A23.2 and a number of TRB Committees. He was elected fellow of ACI in 2004.

	Objectives
1.	Evaluate effect of SP-VEA combinations on
	robustness of SCC subjected to small variations in sand humidity and SP dosage
2.	Propose methodology to evaluate robustness
3.	Identify test methods suitable for robustness evaluation

Codification	Туре	Maximum diameter of VEA powder
PS1	Aninonic polysaccharide	180 μm (coarser grind)
PS2	(Diutan gum-based)	75 μm (finer grind)
PS3	Aninonic polysaccharide (Welan gum-based)	180 µm
CEL	Cellulose-based	< 212 µm
MS	Modified starch	-

		Refere	nce SCC	
8 SP-VE PNS an	EA combina d PCE + 5 V	tions: EA types	SSD condit	ion (kg/m³)
			w/c	0.37
SP	VEA type	VEA dosage (%)	Type GU cement	470
	-	-	Water	175
	PS1	0.02	Coarse agg.	
PNS	PS2	0.03	(MSA 14 mm)	900
	PS3	0.03	Sand	870
	-	-	PNS	≈ 6 L/m³
DOF	PS1	0.02	PCE	≈ 3 L/m ³
PCE	CEL	0.05	VEA (mass of	0.00% 0.05%
	MS	0.03	water)	0.02% - 0.05%
SHERBRO	юке	0.02.5		Missoi Ség

		Testii	ng Pro	gram	
	SP	Variation (w/cm)	VEA	Measureme Fresh	nt Hardened
Phase I: Variation in sand humidity	PNS (12 SCC)	SSD (0.37) SSD – 1% (0.35) SSD + 1% (0.39)	Control PS1 PS2 PS3	Slump flow (10-45 min) Air content (10-45 min) Unit weight (10-45 min)	Compressive
slump flow of 630 ± 20 mm	PCE (12 SCC)	SSD (0.37) SSD – 1% (0.35) SSD + 1% (0.39)	Control PS1 CEL MS	T-50 (10-45 min) VSI (10-45 min) J-Ring (10-45 min) Settlement	strength at 7, 28, and 56 days
Phase II:	PNS (3 SCC)	SSS (0.37), -10%, 0, +10% SP	Selected VEA	Portable vane	Flexural strength at 56 days
SP dosage	PCE (3 SCC)	SSS (0.37), -10%, 0, +10% SP	Selected VEA	Slump flow with cylinder	
SHERBROO	oke	Ser Ser			MISSOL

Workability			Р	NS			P	CE	
(8 propertie	es)	No VEA	PS1	PS2	PS3	No VEA	PS1	CEL	MS
Air	C.O.V.	35.5	3.5	13.6	21.6	17.3	5.6	24.2	25.1
content (Vair)	Rank	8	1	3	5	4	2	6	7
T-50	C.O.V.	11.8	66.9	69.8	16.7	40.8	39.9	44.7	30.7
	Rank	1	7	8	2	5	4	6	3
L Din n	C.O.V.	4.3	6.9	0	5.5	3.9	8.8	4.8	3.0
J-Ring	Rank	4	7	1	6	3	8	5	2
Cylinder	C.O.V.	5.5	9.4	13.4	15.8	48.6	7.7	7.8	10.3
slump flow	Rank	1	4	6	7	8	2	3	5

Markel Hite			Р	NS			P	CE	
(8 properties)	No VEA	PS1	PS2	PS3	No VEA	PS1	CEL	MS
∆Vair	C.O.V.	84.6	15.8	70.5	60.3	94.4	43.3	33.3	96.1
	Rank	6	1	5	4	7	3	2	8
Slump flow	C.O.V.	32.5	33.3	0	37.5	20.0	54.0	25.6	13.1
– J-Ring	Rank	5	6	1	7	3	8	4	2
∆Cylinder	C.O.V.	33.3	15.8	35.7	26.2	55.3	12.5	12.5	17.6
slump flow	Rank	6	3	7	5	8	2	1	4
Settlement	C.O.V.	14.5	6.2	5.6	4.9	6.4	7.7	14.4	7.8
	Rank	8	3	2	1	4	5	7	6

			Р	NS			P	CE	
Rheology		No VEA	PS1	PS2	PS3	No VEA	PS1	CEL	MS
τ ₀ @ 10	C.O.V.	38.4	9.2	4.3	14.0	8.4	19.5	29.8	24.0
min	Rank	8	3	1	4	2	5	7	6
ц. @ 10	C.O.V.	50.7	65.5	36.6	10.3	32.4	32.7	37.5	44.4
min	Rank	7	8	4	1	2	3	5	6
$\tau_{0 rest}$ (MK	C.O.V.	43.0	35.7	7.1	19.1	70.0	25.7	13.5	14.1
III) @ 25 min	Rank	7	6	1	4	8	5	2	3
τ. @ 70	C.O.V.	9.3	25.2	24.6	54.0	6.2	14.7	23.0	10.0
min	Rank	2	7	6	8	1	4	5	3

Marchandard			Р	NS			P	CE	
propertie	s	No VEA	PS1	PS2	PS3	No VEA	PS1	CEL	M
7-d fc'	C.O.V.	3.1	6.2	3.5	6.5	9.8	7.0	9.2	6.0
	Rank	1	4	2	5	8	6	7	3
28-d fc'	C.O.V.	5.0	4.8	2.6	5.9	7.8	6.4	9.0	5.
	Rank	3	2	1	5	7	6	8	4
56-d fc'	C.O.V.	5.3	5.6	6.9	5.7	7.9	3.6	7.0	6.0
	Rank	2	3	6	4	8	1	7	5
56-d fr	C.O.V.	7.3	7.7	6.1	6.0	8.2	3.6	7.4	4.7
	Rank	5	7	4	3	8	1	6	2

Ranking and Classification of Robustness to Sand Humidity

	SP-VEA	Sum of ranks, SR _i	Robustness Ranking	Normalized sum of ranks*
ſ	PNS-PS2	27	1	100%
	PNS-PS3	38	2	75%
ſ	PNS-PS1	40	3	71%
I	PCE-PS1	42	4	66%
ſ	PCE-MS	48	5	52%
ſ	PNS	62	6	21%
ſ	PCE-CEL	68	7	7%
ſ	PCE	71	8	0%
	*Normalized	sum of ranks (%) =	(Max. SR – SR _i) / (Max. SR	– Min. SR) ×100
ŝ	HERBROOKE		10 St	Sé

	Ranki Robus	ng and Clas stness to S	ssification o and Humidi	if ty	
	Normalized sum of ranks (%)	Category	Robustness	VEA	
	81 – 100	Category I	Very high	PNS-PS2	
	61 – 80	Category II	High	PNS-PS3 PNS-PS1 PCE-PS1	
	31 – 60	Category III	Medium	PCE-MS	
	≤ 30	Category IV	Low	PCE-CEL PNS-No VEA PCE-No VEA	
8 S	HERBROOKE	A Star	2.57	S.	SOUR

	Rate of Ac	cceptance	e Values	Lening County Institution
	Dhees II	Rate of Ac	ceptance (%)	
	Phase II	PNS-PS3	PCE-PS1	
	7-d fc'	81	100	
	28-d fc'	68	100	
	56-d fc'	101	100	
	56-d fr	55	100	
	Slump flow at 10 min	84	49	
	J-Ring at 10 min	60	100	
	Settlement	100	75	
	T-50 at 10 min	38	72	
	τ _{0 rest} (MK III) @ 25 min	100	100	
	τ _{0 rest} (IP) @ 25 min	100	37	ſ
	τ _{0 rest} (MK III) @ 70 min	100	17	
	Mean	80.6	77.3	
SHERBROO	KE	22		Se

	Coefficient of	f Variation (%)	Rate of Acc	eptance (%)
Properties	PNS-PS3	PCE-PS1	PNS-PS3	PCE-PS1
7-d fc'	3.2	0.6	81	100
28-d fc'	4.1	1.0	68	100
56-d fc'	3.6	1.6	100	100
56-d fr	6.7	5.1	55	100
Slump flow at 10 min	6.1	6.8	84	49
J-Ring at 10 min	11.1	8.8	60	100
Settlement	2.3	6.3	100	75
T-50 at 10 min	27.9	31.3	38	72
τ _{0 rest} (MK III) @ 25 min	31.5	43.9	100	100
τ _{0 rest} (IP) @ 25 min	18.9	36.5	100	37
τ _{0 rest} (MK III) @ 70 min	37.4	14.2	100	17
Mean	13.9	14.2	80.6	77.3

			н		-	-
HI	ш	IΗ	Ш	Ы	ш	5
		-			 	-

- > SCC made with PNS is more robust than SCC with PCE
- Incorporation of VEA enhances robustness
- Mixtures made with polysaccharide VEAs are more robust than those prepared with modified starch and cellulosed-based VEAs
- Either COV or rate of acceptance methodology can be used to evaluate robustness

		MISSOUR
SHERBROOKE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Set

Conclusions > Sstatistical approach based on Kendall's coefficient of concordance and Spearman's rank correlation was used to identify key properties of SCC that can be used to assess robustness of SCC. > Characteristics that can be used to evaluate robustness include air volume, J-Ring, surface settlement, static yield stress (PV), rheometer, as well as flexure and compressive strengths. > Min. testing program to evaluate robustness should include: Compressive strength at 28 days Surface settlement Yield stress at rest (concrete rheometer or portable vane) SHERBROOKE So 1 aller