

ACI Fall 2012 Convention October 21 – 24, Toronto, ON

ACI

WEB SESSIONS

Wall Thickness, in.	Horizontal Reinforcement Spacing, in.		Vertical Reinforcement Spacing, in.	
	#3	#4	#3	#4
6	7	13	12	16
8	5	10	9	16
10*	9	16	12	16
12*	7	13	12	16

Experimental Parameters					
Parameter	Range				
Longitudinal Reinforcement Ratio	1.1 to 6.0%				
Vertical Web Reinforcement Ratio	0.25 to 0.31%				
Horizontal Web Reinforcement Ratio	0.31 to 1.38%				
Axial Stress (P/Af_c')	0.3 to 14.1%				
Aspect Ratio $\left(H_w/L_w\right)$	2.4				
Loading History					

Slender Walls – Displacement Capacity

- All test specimens were able to sustain multiple cycles to drift ratios exceeding 1%.
- Walls with confined boundary elements were able to sustain larger inelastic deformations.
- Walls that experienced web crushing sustained slightly lower maximum inelastic deformations.
- Maximum inelastic displacement did depend on loading history.

Slender Walls – Shear Capacity

- Average shear stress of $4\sqrt{f'_c}$ represented the boundary between flexural and shear failure mechanisms.
- $\hfill If V_{nf} > 0.6 \ V_{nv}$ shear failure was observed under cyclic lateral loads.
- Walls with low web reinforcement ratios are susceptible to degradation of shear strength with cycling.

CFRP wrap was installed in 2006 and the building has been reoccupied.