E702.2

Designing Concrete Structures:

Interaction Diagrams for Concrete Columns

American Concrete Institute[®] Advancing concrete knowledge Problem Statement: Draw a interaction diagram for a 12" x 12" non- slender tied(non-spiral) column reinforced w/ 4 - # 8 bars bending around it's x-axis.

Notes		ACI-318 05 Reference
Calculate ΦP _{nmax}	Due to the fact concrete structures placed monolithically are continuous, a minimum eccentricity or minimum moment is assummed in this calculation, the code reduces the maximum axial load by 20% to account for this minimum moment.	Section R10.3.6 & R10.3.7
	$\phi P_n = .8\phi [.85f'_c (A_g - A_{st}) + A_{st}f_y]$ (Eq. 1-1)	Section 10.3.6.2 Eq (10-2)
	$A_g = b \times h = 12" \times 12"$	
	$A_g = 144 \text{ in}^2$	
	(Area of 1 - #8 bar = .79 in ²)	
	$A_{st} = (4 * .79) = 3.16 in^2$	
Find Φ	$\Phi = 0.65$	Section 9.3.2.2
	$\phi P_n = .8(.65) [.85(4ksi)(144in^2 - 3.16in^2) + 3.16in^2(60ksi)]$	
	ΦΡ _{nmax} = 347.60 kips	
Calculate points on curve	It is possible to derive a group of equations to evaluate the strength of columns subjected to combined bending and axial loads. These equations are tedious to use, therefore interaction diagrams for columns are generally computed by assuming a series of strain distributions. These strain distributions correspond fo a particular point on the interaction diagram, P and M.	
	Each steel strain is selected by multiplying an arbitrary "Z" factor and the yield strain of your steel.	
	${m {arepsilon}}_{s1}=Z imes {m {arepsilon}}_{y}$ (Eq. 1-2)	
	The "Z" factors can range from 1 to -1000 and increments between "Z" depend on the required detail of diagram. The smaller the increment the more detailed the diagram will be.	

Notes		ACI-318 05
	With the wide range of possible "Z" factors, every designer must understand there are four mandatory points that must be calculated for each interaction diagram. These four points "Z" factors are 0, -0.5,-1.0,,-2.5, the importance of each point will now be discussed.	Kererence
	Z = 0 (ϵ_{s1} = 0) - Strain ϵ_t = 0 in extreme layer in tension. This point marks the change from compression lap splice being allowed on all longitudinal bars to a tension lap splice.	
	Z = -0.5 (f_{s1} = -0.5 f_{y} , ϵ_{s1} = -0.5 ϵ_{y}) This strain distribution affects the length of tension lap splice in a column & is customarily plotted on an interaction diagram.	
	Z = -1.0 (f_{s1} = - f_y , $ε_{s1}$ = - $ε_y$) This is the point of balanced failure. This strain distribution marks the change from compression failures originating by crushing of the compression surface of the section to tension failures initiated by yield of the longitudinal reinforcement. - Also marks beginning of transition zone for Φ for columns in which Φ increases from 0.65 or 0.70 up to 0.90 $Z = -2.5$ (-2.417 if $ε_y = .00207$) This point corresponds to the tension controlled strain limit of 0.005.	
	For this example points will be calculated in the compression controlled zone, (one with the column entirely in compression) ($Z = 0.9, -0.5$), the tension controlled zone ($Z = -5.0$) and the transition zone ($Z = -1.1$).	
	2	

I

I

Notes		ACI-318 05
		Reference
Calculate ε_{s2} Strain in 2nd row of steel	As shown in Figure 1.1: ε_{s2} can be calculated using similar triangles. $\varepsilon_{s2} = .003 \left(\frac{C - d_2}{C} \right) = .003 \left(\frac{25.05'' - 2.5''}{25.05''} \right) (eq. 1-7)$ $\varepsilon_{s2} = 0.002701$	
Calculate stress in each row of steel ($f_{s1} \& f_{s2}$)	$f_{sx} = \varepsilon_{sx} E_s \qquad f_{sx} \le f_y \qquad \text{(Eq. 1-8)}$ $f_{s1} = .001862(29000ksi) \qquad f_{s2} = .002701(29000ksi) = 78.33 \ge 60$	Section 10.2.4
Calculate force in each row of steel	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$F_{1} = 1.58in^{2}(54ksi85(4ksi))$ $F_{2} = 1.58in^{2}(60ksi85(4ksi))$ $F_{1} = 79.95 \text{ kips}$ $F_{2} = 89.43 \text{ kips}$ $I = 1.2 - Equivalent rectangular stress block diagram$ An average stress of .85 f _c is assumed uniformily distributed over an equivalent compression zone.	Section 10.2.6 Section 10.2.7 Section 10.2.7.1
Caclulate C _c (Concrete Compression Force)	Using Figure 1.2 - Caclulate C _c $C_c = .85 f'_c ab = .85(4ksi)(12'')(12'')$ (Eq. 1-11) $C_c = .489.60$ kips	

Notes			ACI-318 05 Reference
Transition Zone	$.002 \le \varepsilon_{s1} \le .005$	5	
Calculate $\Phi P_n \& \Phi M_n$ (column in compression & tension)	Given: $d_1 = 9.50$ in $d_2 = 2.50$ in	$E_s = 29000 \text{ ksi}$ $A_{s1} = 1.58 \text{ in}^2$ $A_{s2} = 1.58 \text{ in}^2$	
,	$\mathcal{E}_c = 0.003$		
Calculate ε _{s1} Strain in 1st row of steel	$\varepsilon_y = 0.002069$ $\varepsilon_z = -1.1(.002069)$	c₁ = 5 401961	
Calculate C	$c = .003 \left(\frac{9.5''}{.003 - (002276)} \right)$	(Eq. 1-4)	
	<i>c</i> = 5.40 in		
Calculate "a" (equivalent stress	$\beta_1 = 0.85$		
DIOCK)	$a = .85(5.4^{\circ}) = 4.59^{\circ} \le 12^{\circ}$ a = 4.590 in	(Eq. 1-5)	
Calculate ε_{s2} Strain in 2nd row of steel	$\varepsilon_{s2} = .003 \left(\frac{5.40'' - 2.5''}{5.40''} \right)$	(eq. 1-7)	
Calculate stress in each row of steel ($f_{s1} \& f_{s2}$)	$f_{s1} =002276(29000ksi) = -$ $f_{s2} = .001612(29000ksi)$	-66≥60ksi (Eq. 1-8) (Eq. 1-8)	
	$f_{s1} = -60.00$ ksi	$f_{s2} = 46.75 \text{ kips}$	
Calculate force in each row of steel	$F_1 = 1.58in^2(-60ksi)$ $F_2 = 1.58in^2(46.75ksi85($	(Eq. 1-9) (4ksi)) (Eq. 1-10)	
	$F_1 =$ -94.80 kips	$F_2 = 68.49 \text{ kips}$	
Caclulate C _c	$C_c = .85(4ksi)(4.59")(12")$	(Eq. 1-11)	
	$C_c = -187.27 \text{ kips}$		
	9		

	ACI-318 05 Reference
$\varepsilon_{s1} \ge .005$	
Given: $d_1 = 9.50 \text{ in}$ $E_s = 29000 \text{ ksi}$ $d_2 = 2.50 \text{ in}$ $A_{s1} = 1.58 \text{ in}^2$ $A_{s2} = 1.58 \text{ in}^2$ Z = -5	
$\varepsilon_c = 0.003$	
$\mathcal{E}_y = 0.002069$	
$\varepsilon_{s1} = -5(.002069)$ $\varepsilon_{s1} = -0.010345$ (Eq. 1-2)	
$c = .003 \left(\frac{9.5''}{.003 - (010345)} \right) $ (Eq. 1-4)	
<i>c</i> = 2.14 in	
$eta_1 = 0.85$	
$a = .85(2.14") = 1.819" \le 12"$ (Eq. 1-5)	
<i>a</i> = 1.819 in	
$\varepsilon_{s2} = .003 \left(\frac{2.14''-2.5''}{2.14''} \right)$ (Eq. 1-7)	
$\varepsilon_{s2} = -0.000505$	
$f_{s1} =010345(29000ksi) = -300 \ge 60ksi$ (Eq. 1-8)	
$f_{s2} =000505(29000ksi) $ (Eq. 1-8)	
$f_{s1} = -60.00 \text{ ksi}$ $f_{s2} = -14.65 \text{ kips}$	
$F_1 = 1.58in^2(-60ksi)$ $F_2 = 1.58in^2(-14.65ksi)$ (Eq. 1-9)	
$F_1 = -94.80 \text{ kips}$ $F_2 = -23.15 \text{ kips}$	
$C_c = .85(4ksi)(1.819'')(12'')$ (Eq. 1-11)	
$C_{c} = 74.22 \text{ kips}$	
11	
	$\begin{aligned} \mathcal{E}_{s,1} \geq .005 \\ \text{Given:} \qquad \begin{array}{c} d_1 = 9.50 \text{ in} & \mathbf{E}_8 = 29000 \text{ ksi} \\ d_2 = 2.50 \text{ in} & \mathbf{A}_{s1} = 1.58 \text{ in}^2 \\ \hline \mathbf{Z} = -5 \\ \end{array} \\ \mathcal{E}_c = 0.003 \\ \mathcal{E}_\gamma = 0.002069 \\ \mathcal{E}_{s,1} = -5(.002069) & \underbrace{\mathcal{E}_{s1} = -0.010345}_{(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$

Notes		ACI-318 05
		Reference
Calculate ΦP_{nt}	When column is entirely in tension the designer shall assume the concrete in the column will not contribute to tension strength, only reinforcement shall resist tension.	Section 10.2.5
	$P_{nt} = -A_{st}f_{y}$	
	(Area of 1 - #8 bar = .79 in ²)	
	$A_{st} = (4 * .79) = 3.16 in^2$	
	$P_{nt} = 3.16in^2 (60ksi)$	
	$P_{nt} = -189.60 \text{ kips}$	
Find Φ	Φ = 0.9	Section 9.3.2.2
	$\phi P_{nt} = .9(-189.6 kips)$	
	ΦP _{nt} = -170.64 kips	
Draw interaction diagram using	ξ _{s1} ΦΡ _n ΦΜ _n	
points calculated.	0.002069 347.60 0.00	
	0.0018621 347.60 1.83	
	-0.001034 182.87 84.82 -0.002276 108.33 70.97	
	-0.010345 -39.36 47.14	
	-170.64 0.00	
	Column Interaction Diagram	
	400.00	
	300.00	
	200.00	
	0.00 1000 2000 3000 4000 5000 6000 7000 8000	
	-100.00	
	-200.00 • • • • • • • • • • • • • • • • •	

