aci

Prediction of Drying Shrinkage For Internally Cured High-Performance Concrete

Tengfel Fu Ph.D. Candidate Tyler Deboott Faculty Research Assistant Jason H. Ideker, Ph.D. Assistant Professor and Kearney Faculty Scholz

Oct 23rd ,2012 ACI Fall 2012, Toronto, Canada

Project Goals

- Investigate the effectiveness of the incorporation of pre-wetted FLWA and SRA in terms of reducing drying shrinkage and external curing duration;
- Identify a drying shrinkage threshold criteria for HPC bridge deck to ensure high crackingresistance concrete
- Develop a simple testing procedure which can be easily used by contractors or materials suppliers to evaluate the cracking-resistant performance

Drying Shrinkage ACI-209 Model Features of Drying Shrinkage development curve: Monotonic increasing; $\varepsilon_{sh}(t,t_c) = \frac{(t-t_c)^{\alpha}}{f+(t-t_c)^{\alpha}} \cdot \varepsilon_{shu}$ · Increasing rate slows down in time; • Should have a theoretical ultimate value. $\varepsilon_{shu} = 780\gamma_{sh} \times 10^{-6} mm/mm \ (in/in)$ (converge to an asymptote). $$\begin{split} \epsilon_{ah}(t,t_2) &= \text{shrinkage strain at concrete age t since the start of drying at \\ &= age t_s, mn/mm (in/in); \\ \epsilon_{ahu} &= ultimate shrinkage strain, mm/mm (in/in); \\ a_f &= constants defining the shape of time-dependent curve; \\ y_{ah} &= the cumulative product of the applicable correction factors including initial moist curing duration, ambient relative humidity, size of the drying specimen in terms of the volume-surface ratio, and fresh concerte properties. \end{split}$$ Thus, a good prediction model should: • Good description of the time function; · Converge to an asymptote; · Easy to use. concrete properties/ Oregon State Oregon State

Mixture	Number of days from initiation of drying (14 day curing, µm/m)										Difference between
	28	35	42	49	56	70	84	98	120	180	selected cut- off date and 180 day
1	1090	1050	1000	950	970	980	990	950	930	910	4.4%
1A	910	980	910	890	870	860	-	-	840	860	3.5%
2B	760	730	730	720	710	720	740	740	750	780	-7.7%
2C	730	750	740	750	750	770	760	770	770	780	-3.8%
3A	880	820	810	800	780	780	780	780	780	820	-2.4%
3B	920	900	860	850	840	840	840	840	850	860	-1.2%
3C	870	880	840	840	830	830	830	830	870	880	-4.5%
3D	910	980	910	890	870	860	-	-	-	860	3.5%
1-SRA	NC	2850	1680	1300	-	860	780	780	790	790	-1.3%
3C-SRA	NC	-	-	-	820	-	670	670	640	660	1.5%

Proposed Procedure • Perform ASTM C157 test . After 28 days of drying, perform curve fitting to all data at hand using ACI full equation, determine the three parameters ($\varepsilon_{sh} \alpha$, and f); Keep tracking the shrinkage development till the fitted ε_{sh} is stable at certain drying period (cut-off time), take the last fitted ε_{sh} as the ultimate shrinkage value; Cut-off time in this research:

- 50 day for HPC;
- 50 day for HPC with FLWA;
- 90 day for HPC with SRA.

Conclusions

Oregon State

- SRA effectively reduced drying shrinkage, and synergy with FLWA worked best;
- To achieve less drying shrinkage in the long term, a higher FLWA replacement ratio is needed;
- It is possible to predict long term shrinkage, using ACI 209 model, based on short term (50~90 days) shrinkage measurement (ASTM C157).

Oregon State

Future Work Collect more data to verify the proposed procedure; Understand the physical mechanism of drying shrinkage; Understand the mathematical feature behind the ACI 209 model to stop the test at the minimum age and predict reasonably accurate long-term drying shrinkage; Incorporate this model in the drying shrinkage limits criterions; ASTM C1581 (Ring) Test.

Oregon State

