

• Recent Innovations in Admixture Technology

- Chemical Admixture Wish List
- Wonderful World of Polycarboxylates
- Dial-in Slump Retention with Time-Release PCE
- Admixtures For Aggregates
- "Nano" Admixtures for Accelerated Strength Performance
- Admixture for Pervious Concrete

Outline

GRACE

Ah...yes...

The Future of Chemical Admixtures.....

Are you ready??

GRACE

Latest Innovations in Admixture Technology

(over the past 10 years)

- Polycarboxylate-based Superplasticizers
 PCs for Self-Compacting Concrete
 Shrinkage Reducing Admixtures
 ASR Control Agents
 Admixtures for CLSM (Controlled Low Strength Material)
 Hydration Stabilizing Agents for Returned Concrete
 Antifreze Admixtures (non-corrosive, alkali-free)
 Viscosity Modifying Admixtures
 Anti-washout Admixtures
 Slump Extending Admixtures
 Nano-Admixtures for High Early Strength

- Nano-Admixtures for High Early Strength
- Admixtures for Pervious Concrete
- •Surface Enhancing Admixtures

GRACE

GRACE

Addressing Concrete Durability Issues

Challenges Brittleness - cracking

- Dimensional stability ~
- Thermal and hydration
- Permeability water
- transport
- ASR & DEF Sulfate attack
- Corrosion
- Freeze/thaw

ASR – Lithium Salts

Solution Strategies

* Improve curing (self-curing) - Polyacrylics

- Integral waterproofing - Stearates

Freeze-Thaw - Air entrainment w/

* Corrosion Inhibitor- Calcium Nitrite

QC of raw materials – Paste Calorimetry

Admixtures to lower w/c - Superplasticizers

Reactive Void Fillers - Microsilica, limestone

Surfactants, Wood Rosins, Tall Oil

* Improve ductility - Macro fibers

Reduce shrinkage – SRA

* Reduce permeability

GRACE

 Admixture systems of Portland cement An admixture that f increases robustne

Integral curing adm

ent levels (50% +) gnificantly rn for failed loads.

Dial-in slump retention without extended set and independent of cement chemistry and temperature.

Effect of Water Reduction on Concrete

Cement dispersion is the most important and extensively used technical capability chemical admixtures provide in producing <u>sustainable</u> quality concrete mixtures.

Benefits of Superplasticized Concrete Mix Proportions, kg/m3				
	Reference	High Strength	Flowing Concrete	Cement Reduced Mix
Cement	356	356	356	267
Sand	712	742	772	845
Stone	1127	1216	1068	1187
Water	178	133	178	133
Superplasticizer, l/m3	-	0.9	0.9	0.6
W/C	0.50	0.38	0.50	0.50
Slump, mm	115	125	240	125
Compressive Strength, MPA				
1-day	9.7	19.2	11.9	10.5
7-day	28.3	39.4	31.2	29.5
28-day	35.3	46.8	38.3	36.8

Unexpected Performance Changes in Cementitious Systems

•Cement Chemistry

Kiln fuels, interground additions, variable forms of gypsum

•Supplementary Cementitious Materials

- Fly ash, slag, silica fume, metakaolin

•Chemical Admixture

- More complex formulations - Multiple Admixtures (i.e. WRA, HRWR, AEA, Accel)

ASTM Sub-committee C01.90.02/C09.90 Joint Task Group on PASTE SYSTEM PERFORMANCE GRACE

Concrete Admixtures for Pervious Concrete * Maximize Compaction & Flowability Strength related mainly to voids content (aggregate compacted voids content and paste volume), much less to paste strength (w/cm, silica fume) ompactability needed for consistent nance (field compaction sometimes m High co nal) mpactability expected to correspond to fast duce Paste Drain & Water Sensitivity (HRWR/VMA) Re Proper paste rheology needed collecting at bottom of section eeded to prevent paste * Lengthen Curing Window (Retarder -VMA) Increase water content Retard cement hydration Bind water b/b₀=(agg con GRACE

Nano Seed/ Particles for Concrete Calcium silicates Magnesium silicates Lime, CaO Hydrated Lime, Ca(OH)2 Calcium Carbonate, CaCO3 Titanium oxide, TiO2 Silica, SiO2 Iron Oxides Carbon nanotube All of these particles, when present in the nano-size range, have the ability to promote nucleation of cement hydration products, thus accelerating cement hydration process and strength gain.

GRACE

GRACE

Automated Slump Control: In -Transit Water and Superplasticizer Adjustments

Some final thoughts:

Regardless of what new and exciting admixture technologies are introduced into the concrete industry, successful routine production of cost-effective, high quality, and sustainable concrete will greatly be facilitated by:

- Identify those parameters materials, processes, structure design, and environment – that can transform in spec concrete construction into a case for litigation.
- Learn how to predict and control those parameters
 keeping away from the edge of disaster.

GRACE

