Development and Implementation of Aggregate Grading for Pavements

Daniel Cook, Ashkan Ghaeezadeh, Nick Seader, Bruce Russell, Tyler Ley

Acknowledgements

- Oklahoma Department of Transportation (ODOT)
- Oklahoma Transportation Center
- CP Tech Center
- FHWA Highways for Life

Outline

- Packing Models
- The Box Test
- The Tarantula Curve!
- Conclusions

Reoccurring Aggregate Questions:

- How do you proportion aggregate?
- Are packing models useful?
- Is one better than another?
- Do they provide practical answers?

Theory of Packing

"The role of the cement paste is to fill the voids between aggregates, to give a certain workability (like the grease in a ball bearing) and to bind the aggregate together when the past hardens."

-Golterman, Johansen, Palbol 1997

Theory of Packing

- By reducing the voids between aggregates then we reduce the paste we need.
- While it is a good idea to reduce voids in a mixture, we still need to have a mixture that is workable.

Packing Models

- Modified Toufar Method (2004)
 - Theoretical method that assumes spherical and monosized particles
- De Larrard (CPM) (1999)
 - Theoretical method that takes into account the actual packing, maximum packing density, and the wall effect of the container
- Specific Surface Area
- Combined dry-rodded unit weight

Graphical Methods

Coarseness Factor

Power 45

Percent Retained

Slip Formed Paver

What part of a paver is the most critical for concrete consolidation?

Box Test

- Add 9.5" of unconsolidated concrete to the box
- A 1" diameter stinger vibrator is inserted into the center of the box over a three count and then removed over a three count
- The edges of the box are then removed and inspected for honey combing or edge slumping

Box Test Ranking Scale

Edge Slumping

Bottom Edge Slumping

Top Edge Slumping

No Edge Slump

Edge Slump

Evaluating Mixtures with the Box Test

Summary of the Box Test

- The box test evaluates the response of a concrete mixture to vibration and the ability to hold an edge.
- We did this because no other test exists that can tell us this information.
- Low amounts of water reducer is good
- High amounts are bad

Validation

- Single operator +/- 1.5 oz./cwt
- Multiple operators +/- 3.2 oz./cwt
- Same box test performance was found if the WR was added up front or if added in small dosages
- If the sample did not pass the box test within one hour it was discarded
- The box test has compared well with field paving mixes

Mixtures

- .45 w/cm
- 5 Sacks total cementitious (470 lbs)
- A single sand source
- 3 coarse and intermediate aggregates:
 - Limestone A
 - Limestone B
 - Crushed River Gravel

Coarseness Chart

Dry Rodded Unit Weight of Coarse and Fine

Modified Toufar

De Larrard

Specific Surface Area (SSA)

Summary

- None of the following show good correlation to the box test results:
 - Voids content in the two packing models
 - Specific surface area
 - Voids content in the combined dry rodded unit weight
 - Location in the Coarseness Factor Chart

Summary

The percent retained chart did a good job of indicating which gradation would have a good performance in the box test!

How about the Power 45?

Between 10 & 20 oz./cwt of WR No!

Lower than 10 oz./cwt of WR Yes!

How can you tell the difference?

This helps a lot!

Why is the WR dosage different?

0.0 oz/cwt

Crushed Limestone B
Cubic Shaped
Medium Angular
Low Texture

3.0 oz/cwt

Crushed Gravel
Slightly Flat Shaped
Low Angular
Low Texture

6.9 oz/cwt

Crushed Limestone A
Flat Shaped
Medium Angular
Medium Texture

Summary

While the individual percent retained chart did the best job of the techniques investigated, the aggregate flatness and texture plays a role in performance.

Use of the Box Test to Evaluate Gradations

- .45 w/cm
- 20% fly ash
- Three sand sources
- Used 5 coarse aggregates
 - Three limestones
 - Two river gravels
- All mixtures are 4.5 sack (423 lbs/cy)

Proportioning of Coarse to Intermediate

Proportioning Fine Aggregate

ASTM 4791

- Measures flatness, elongation, and overall shape of a particle.
- This is based off ratios such as 1:1, 1:3, or 1:5.
- A common limit is less than 15% on the 1:5 for flat, elongated, or flat & elongated.

ASTM D 4791 for Flatness of 1:2

Application

- Five different concrete producers have tried this system and all have seen improvements in their concrete.
- 10 miles of CRCP for the FHWA hfl project have been placed with this system in Texas.
- The contractors saw a 10% cost savings with a 25% reduction in the carbon footprint!

Minnesota Field Mixtures

 We tracked optimized graded concrete pavement mixtures from 1996 to 2010 in Minnesota

Data from Maria Masten

Data from Maria Masten

Data from Maria Masten

Field Concrete

- Over time the contractors have iterated on their concrete pavement mixtures to improve them.
- They are doing this with trial and error and no knowledge of the Tarantula Curve
- The large majority of their mixtures are fitting within the Tarantula Curve.

Conclusions

- A single location or region on the Coarseness Factor chart, minimum voids content, or specific surface area does not predict the workability of a mixture with the box test and with these materials
- The voids content and specific surface area may still be important. More research needs to be done.

Conclusions

- The individual percent retained chart was a useful tool to evaluate mixtures.
- The shape and texture of aggregates does have an impact on the workability.
- The Tarantula Curve seems to be a useful technique to determine an aggregate gradation
- The recommendations from the Tarantula Curve seem to match field performance of Minnesota pavement mixtures

Questions?

www.optimizedgraded.com

www.tylerley.com

May the Force be with you!!!!

What about Strength?

	7 Day Strength		28 Day Strength	
		Average	Min-Max	Average
Source	Min-Max (psi)	(psi)	(psi)	(psi)
Limestone A	4000-6320	5180	5330-8890	6940
Limestone B	4990-5270	5130	6220-7940	7450
River Rock	3990-4850	4440	5760-7050	6410

All mixtures had 4.5 sacks of total cementitious with 20% fly ash

Aggregate Behavioral Division

More than 20 oz./cwt of WR

More than 20 oz./cwt of WR

Reference

- Per primance Analysis System (Version 1.00.0022)
 [computer software]. Austin, Texas: 2004
- de Larrard, F. Concrete Mixture Proportioning: A Scientific Approach. London, UK: E & FN Spon;
- Agg egates: An Alternative Tool to Determine the Optimal Aggregate Mix," ACI Materials Journal. 94 armington Hills, MI: ACI; 1997. p. 435-443.