43

American Concrete Institute® Advancing concrete knowledge

Composite and Modular Structures, Part 2

ACI Spring 2012 Convention March 18 – 21, Dallas, TX Amit Varma is an Associate Professor and University Faculty Scholar at Purdue University. Steel-concrete composite structures are his passion. He is the current vicechair of AISC TC12 subcommittee on modular composite construction, which is developing a new specification (Appendix to AISC N690) for SC walls in nuclear facilities. He has led research on the experimental behavior, analysis, and design of SC walls and structures for the nuclear power industry including Westinghouse Electric Corp., Bechtel Power Corp., Mistubishi Heavy Industries, and URS. He is also the Director of the SEET-NPP Center at Purdue University.

INTRODUCTION

- There is significant interest in the behavior, analysis, and design of steel-plate composite (SC) wall for third generation safety-related nuclear facilities.
- These SC walls are being used as secondary shield walls for containment internal structures of nuclear facilities, and in some cases even the exterior shield building.
- Feasibility to used as containment structure.

E LAB

BACKGROUND

- The design of conventional reinforced concrete (RC) walls for nuclear facilities is governed by the American Concrete Institute (ACI) code 349 [1].
- However, there is no such code for design of SC walls for safety-related nuclear facilities in the US.
- The American Institute of Steel Construction (AISC) has formed a sum-committee to develop an appendix to AISC N690 [2] focusing on SC walls.
- This appendix is currently in development, and this presentation includes some of the design specifications and associated commentary for SC walls.

BOWEN

OBJECTIVES

- Propose a simple mechanics based model (MBM) to investigate the in-plane behavior of SC wall panels.
- Verify the model using existing experimental results, and also detailed nonlinear finite element models.
- Develop an interaction surface in principle force space for design.
- Further develop the MBM to account for the effects for out-ofplane moments combined with the in-plane forces.
- Develop a simple design approach that is based on the interaction surface in principal force space and can be implemented easily for SC wall sections.

The section averaged strains (ε_x, ε_y, and γ_{xy}) can then be used to compute the stresses (_σσ_x, σ_y and τ_c) in the concrete infill and the steel faceplates (_sσ_x, σ_y, and τ_s). The stress transformation matrix (Π_σ can then be used to compute the principal stresses (_σσ_{p1} and _σσ_{p2}) in the concrete infill and the steel faceplates (_sσ_{p1} and _σσ_{p2}). The stress transformation matrix (Π_σ can then be used to compute the principal stresses can be used to determine the occurrence of Von Mises yielding using the following equation, where σ_{vM} is the Von Mises stress and yielding occurs when it becomes equal to the steel plate yield stress F_y. σ_{vM} = √σ²_{p1} + σ²_{p2} - σ_{p1}σ_{p2} ≤ F_y

BOWEN

- NONLINEAR INELASTIC FINITE ELEMENT MODEL
- o Address some of the limitations of MBM.
- The steel-plate (SC) composite section was modeled using layered composite shell (LCS) finite elements in ABAQUS.
- The steel material model was based on multiaxial plasticity with Von Mises yield surface, associated flow, and kinematic hardening.
- The concrete material model was based on multiaxial plasticity in compression with Drucker-Prager compression yield surface, non-associated flow, and hardening followed by softening.

BOWEN

DESIGN FOR COMBINED FORCES AND MOMENTS

- The results from the finite element analyses and the mechanics based models were used to develop a simple design approach for evaluating SC wall sections subjected to combined in-plane forces (S_x, S_y, S_{xy}) and out-of-plane moments (M_x, M_y, M_{xy}).
- The design approach considers the SC composite section in two notional halves (top and bottom) that are subjected primarily to membrane forces (S_x ', S_y ', and S_{xy} ') that can be calculated using the in-plane forces and out-of-plane moment demands using an assumed arm length (for example, 0.90 T).

10

E LAB

SUMMARY AND CONCLUSIONS

- This presentation gives a simple design approach for SC walls subjected to combined in-plane forces and out-of-plane moment demands.
- The approach is applicable to SC Walls that are detailed to prevent SC specific failure modes like local buckling, interfacial shear failure, etc.
- The design approach has been developed using the results of mechanics based models verified using experimental results and detailed nonlinear finite element analyses.
- The design approach consists of developing an interaction surface in principal force space (S_{p1} and S_{p2}), and using it to check each notional half of the SC wall section subjected to combined in-plane forces and out-of-plane demands.

E BOWEN

REFERENCES

- [1] ACI 349 (2006), "Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary," American Concrete Institute, Farmington Hills, MI.
- [2] AISC N690 (2006), "Specification for Safety-Related Steel Structures for Nuclear Facilities," AISC, Chicago, IL.
- [3] Varma, A.H., Zhang, K., Chi, H., Booth, P. and Baker, T. (2011). "In-Plane Shear Behavior of SC Composite Walls: Theory vs. Experiment." *Proceedings of the 21st IASMIRT Conference*, SMIRT 21, Paper ID #764. Nov. 6-11, New Delhi, India.
- [4] Ozaki, M., Akita, S., Oosuga, H., Nakayama, T., Adachi, N. (2004). "Study on Steel Plate Reinforced Concrete Panels Subjected to Cyclic In-Plane Shear." *Nuclear Engineering and Design*, Vol. 228, pp. 225-244.

A