Evaluation of Concrete Curing Effectiveness

0

Muhammad Ehsanul Bari Dan Zollinger, Phd, PE Peizhi Sun

Zachry Department of Civil Engineering Texas A&M University

14 April, 2013

OUTLINE

- Present Technology
- ASTM C 156
- New Approach
- Curing Indexing
- Index Validation and Testing
- Conclusions

Present Testing Technology

- Time of Curing
 - Low surface concrete strength
 - Delamination and spalling
- Duration (rate) of Curing
 - Set Gradient
- Liquid membrane-forming curing compounds
 - Only represented by total moisture loss
 - No attention paid to a design rate of application

ASTM C 156

Limitations of ASTM C 156

- Focus on water retention
- Have several limitations
 - Limited to fixed test conditions & application rate
 - Difficult to interpret for field application

Some Other Methods

- New curing technologies: lithium, post treatments
- Multiple applications
- What constitutes quality curing---<u>Is water loss early a bad thing or not?</u>

New Approach

- Laboratory Test for Evaluating Curing Compound
 - Relative humidity (RH) measurement
 - Moisture loss measurement
 - Concrete surface abrasion test
- Propose an Evaluation Index
- Relate Index to Performance

ACMM device to collect RH data

- RH data
- Ambient temperature
- Wind speed
- Solar radiation

- Sealed chamber
 - Collect RH data near perfect curing conditions
- Filtered chamber
 - Collect RH data just below the concrete curing surface

- screen is place over a plate for the filter chamber
- thin mortar layer on the screen
- curing compound is applied on the mortar

After placing curing compound , place the ACMM device on the housings in the plate

 same procedure is applicable for field condition to collect RH data

- Example of RH Data
 - Curing compound 1600
 - 225 ft²/gal application rate

Indexes for Evaluating Curing

- Evaluation Index
 - based on maturity or equivalent age of concrete
- Curing Index
 - through modeling curing as moisture diffusion process
 - based on time dependent diffusion coefficient

Evaluation Index (EI)

• Equivalent Age (t) of Concrete

$$\beta_H = \left[1 + (7.5 - 7.5H)^4\right]^{-1}$$

$$t_{i} = \beta_{H} \times \sum_{0}^{t} \frac{(T - T_{o})}{T_{rm} - T_{0}} \times \Delta t = \frac{1}{1 + (7.5 - 7.5 \times RH)^{4}} \sum_{0}^{t} \frac{(T - T_{o})}{T_{rm} - T_{0}} \times \Delta t$$

where

t

i

Т

 T_0

T_{rm}

- β_{H} = the moisture modification factor
- RH = the humidity of concrete
 - = equivalent age of concrete
 - = sealed, filtered, and ambient conditions
 - = the average temperature of the concrete during time interval Δt
 - = the datum temperature with a value of -10 °C
 - = room temperature 21°C

Evaluation Index (EI)

• El is defined as:

$$EI = \frac{t_f - t_a}{t_s - t_a}$$

where

 t_f = the equivalent age of the filtered curing condition t_s = the equivalent age of the sealed curing condition t_a = the equivalent age of the ambient curing condition

Curing Index

Curing process can be represented by the following differential equation:

$$\frac{\delta u}{\delta t} = \alpha \, \frac{\partial^2 u}{\partial z^2}$$

Suction in pF = log (capillary pressure)

where

- u = suction in concrete (pF)
- $\alpha = \text{Diffusion coefficient (cm²/sec)}$
- t = time (sec)

Curing Index

Curing Index,
$$CI = \frac{\alpha_w - \alpha_c}{\alpha_w - \alpha_b}$$

where

 $\begin{aligned} \alpha_c &= current \ diffusion \ coefficient \\ \alpha_b &= best \ possible \ diffusion \ coefficient \\ \alpha_w &= worst \ possible \ diffusion \ coefficient \end{aligned}$

Modeled CI with $CI = a - b \times \exp(t^c)$ with R² = 0.92

Dielectric Constant (DC)

- Apply a thin layer of concrete mortar on top of the cap and spray curing compound on it
- Take off the cap and insert the probe into the cylinder when measuring the DC readings
- Let the bottom surface of the probe
 - fully contact with the concrete surface
 - and read the reading

Dielectric Constant (DC)

 $\varepsilon(t,\alpha,\beta,\tau) = \tau \cdot e^{-(t/\beta)^{\alpha}}$

 τ is related to the curing compound application rate. The higher τ is, better the curing quality is.

 α is related to curing compound quality. The higher α is, it is more likely that curing compounds would diminish more quickly.

 β is related to the effective duration of the curing compound.

Concrete Surface Abrasion Test

- Test concrete surface abrasion resistance based on ASTM C944
- By measuring the amount of concrete abraded by a rotating cutter in a given time period (10 min, under 22 lb. of load in this study)

Set Gradient

Field Performance Calibration

Pavement Type	Thickness	(Summer 86) <u>% Cracked</u>	(Spring 87) <u>% Cracked</u>	(Fall/Winter 87) <u>% Cracked</u>	Measured Temperat <u>Air</u>	Range of ure(*F) <u>Surface</u>
40' Jointed	9.5" 8.5" 7.5"	100 87 86	100 87 86	100 98 100	77/97 82 76/81	92/97 89 84/90
20' Hinge Joint Design Al Design A2 Design B	8.5" 8.5" 8.5"	0 0 0	0 0 0	0 0 0	82** 82** 82	89** 89** 89**
20' Jointed	9.5" 8.5" 7.5"	0 5 0	0 5 0	0 5 5	77/97 93 80/97	92/97, 110 103/115
Freeport, Ill:				1.11		
40' Jointed	10"	0	9	12	57/74	74/79
20' Jointed	10"	0	0	0	/9/83	81/88
15' Jointed	10"	0	0	0		

Table: Jointed Pavement Crack Survey

** Estimated average

Performance vs. Climatic Conditions

Cracking Calibration

$$\begin{aligned} & \text{Damage Coefficients } (C_4, C_5) \\ & \% C = \frac{1}{\left[1 + C_4 D^{C_5}\right]} = \left[1 + C_4 N^{C_5} N_f^{-C_5}\right]^{-1} \\ & \left[\frac{1}{\% C} - 1\right] N_{f_c}^{C_5} = C_4 N^{C_5} \\ & Ln \left\{ \left[\frac{1}{\% C} - 1\right] \right\} + C_5 Ln \left\{ N_{f_c} \right\} = Ln(C_4) + C_5 Ln(N) \\ & Ln \left\{ \left[\frac{1}{\% C} - 1\right] \right\} = Ln(C_4) + C_5 \left\{ Ln(N) - Ln \left\{ N_f \right\} \right\} = Ln(C_4) + C_5 \left\{ Ln(D) \right\} \\ & Ln \left\{ \left[\frac{1}{\% C} - 1\right] \right\} = Ln(C_4) - C_5 Ln \left\{ N_{f_c} \right\} + C_5 \left\{ Ln(N) \right\} \\ & y = b + mx \\ & y = Ln \left\{ \left[\frac{1}{\% C} - 1\right] \right\} \\ & x = Ln(N) \\ & m = C_5 \\ & b = Ln(C_4) - mLn \left\{ N_f \right\}; \ C_4 = e^{b + mLn \left\{ N_f \right\}} \end{aligned}$$

Design Stress Ratio

$$\Delta r_{ci} = r_c - r_i = r_{built-in} - r_{-10^{\circ}C}$$
$$r_{built-in} = \Delta r_{ci} + r_{-10^{\circ}C}$$

Built-In Gradient

$$r_{design} = \frac{O_{Tot}}{MOR} = \left\{ r_{wls} + r_{env} \right\}$$

$$r_{env_i} = \frac{\sigma_{env_i}}{MoR} = \left\{ r_{c\&w_i} + r_{built-in} \right\} = \left\{ r_{c\&w_i} + \Delta r_{c\&w_c} + r_{set} \right\}$$

$$r_{built-in} = \left\{ \Delta r_{c\&w_c} + r_{set} \right\}$$

- Therefore, evaluation index or curing index can be tied to the calibration of cracking and allowable wheel load calculation.
- This can help to better predict the performance of the pavement.

Test Program

Material and Mixture Design

	W/C	Unit Weight (lb./ft ³)			
Mixture	Wie	Water	Cement	Sand	
wiixtuite	0.4	15.38	38.45	105.75	
	0.43	16.53	38.45	102.69	

Curing Compound

Designation	Туре	Comments
A	Type 2—Class B	Normal Resin-based
В	Type 2—Class B	High Reflective
Sinak Relay Lithium	Lithium Based	

Test Program (Contd...)

Experimental Design

Variable	Unit	Low Level	Mediur	n Level	High Level
Curing compound		А	Lith	ium	В
Application Rate	Ft ² /gallon	220			120
w/c of mixture		0.4			0.43
Wind Speed	mph	0			5

Environmental Condition

Temperature	32 ± 1°C (89.6±1.8 °F)
Moisture	50 ± 5%

Validation Checking

- Evaluation of Curing effectiveness between <u>different curing compounds</u>
- Evaluation of Curing effectiveness under <u>different ambient conditions</u>
- w/c ratio = 0.43 for all the results shown in the presentation

Validation Checking

EI at 72 hours

3-day Abrasion weight loss

Sands used in this section are 100% passing through #4 sieve, some of the large variance may due to the influence of large aggregate particles retaining on #8 sieve.

Dielectric constant

Circle----- Curing compound B Line----- Curing compound A Triangle---- Lithium

Red-----120 AR Green ----220 AR

(some tests were conducted by a few people, lack of consistency)

Dielectric constant & Water content

• Two same mixes applied with high (120 ft²/gal) and low (220 ft²/gal) rate of curing compound

- Sample with higher application rate (120 ft²/gal) shows higher DC and water content over time
- Water content is predicted using a self consistent model developed by Dr. Sang Ick Lee

$$\theta_{w} \frac{\varepsilon_{1} - \varepsilon}{\varepsilon_{1} + 2\varepsilon} + \theta_{hcp} \frac{\varepsilon_{2} - \varepsilon}{\varepsilon_{2} + 2\varepsilon} + \theta_{uc} \frac{\varepsilon_{3} - \varepsilon}{\varepsilon_{3} + 2\varepsilon} + \theta_{Agg} \frac{\varepsilon_{4} - \varepsilon}{\varepsilon_{4} + 2\varepsilon} + \theta_{Air} \frac{\varepsilon_{5} - \varepsilon}{\varepsilon_{5} + 2\varepsilon} = 0$$

Model for Comparison of Dielectric constant

Weibull accumulative distribution:

$$W(\tau,\alpha,\beta,t) = \tau. \left[1 - e^{-\left(\frac{t}{\beta}\right)^{\alpha}} \right]$$

where,

 τ = amplifying parameter β = scaling parameter, and α = shift parameter.

	τ	Ι/β	α
I 20 ft2/gal	16.778	76.923	0.417
220 ft2/gal	16.47	5.848	0.446

Higher $I/\beta \rightarrow$ Lower rate of reduction of moisture \rightarrow Better curing

Victoria, Tx

Victoria Test Plan

3/26/2013

5/20/2015					
100 Ft Test Section	Surface Treatment (1)	Lithium Cure (2)	Shrinkage Reduction (3)	Resin Cure (13=4)	Notes
1	+ NO	- Tr	- None	200 ft ² /gal	First half sprayed with Dayton resin, rest sprayed with city resin
2	- SB	- None	+ With	200 ft²/gal	manually sprayed with city resin
3	- SB	- Tr	- None	150 ft²/gal	manually sprayed with city resin

3/28/2013

100 Ft Test Section	Surface Treatment (1)	Lithium Cure (2)	Shrinkage Reduction (3)	Resin Cure (13=4)	Note
1	+ NO	+ Si	+ With	150 ft ² /gal	All the Lithium are sprayed
2	- SB	- Tr plus	+ With	200 ft²/gal	manually at 200 ft2/gal.
3	+ NO	+ Si	+ With	200 ft ² /gal	The City Resin cure are sprayed
4	- SB	+ Si mix	+ With		by using the machine. 150 ft^2/gal
5	+ NO	- Tr plus	+ With	150 ft2/gal	goes two passes, 200 ft ² /gal goes
6	+ SB	+ Si mix	- None		one pass.
7	+ SB	+ Si	- None	150 ft ² /gal	No City Resin was sprayed on
8	- NO	+ Si mix	- None		Section 4, 6, 8, since the Sinak
9	- SB	- Tr	- None	150 ft ² /gal	Lithium sprayed on this section is already mixed with resin

Effectiveness Index (EI)

Date	100 Ft Test Section	Lithium Cure (200 ft ² /gal)	Resin Cure
March 26	Ι	- Transil	200 ft ² /gal
March 26	3	- Transil	l 50 ft²/gal
March 28	3	+ Sinak	200 ft ² /gal
March 28	8	+ Resin-mixed Sinak	None

- Dayton Resin cure were unevenly sprayed on March 26 Section#1 because the thick compound clogged the spray gun.
- The other sections are sprayed with City Resin cure (except for March 28 Section#8)

Evaluation Index (EI)

Test Section 8 at Victoria

Curing Index

Section 3 and Section 8, Victoria

T and RH Gradient

- set gradient around maturity 200 deg C-hr
- leads to curled up position
- set gradient strain was 5×10-4

T and RH gradient of Section 8 at 8.75 hr

Curing Effectiveness

- Can be monitored in laboratory and the field
- Can be indexed to strength and setting
- Moisture Modeling (routinely done)
 - Examine the factors affect set gradient of concrete
 - Improved calibration of cracking models
 - Improved concrete pavement design and performance prediction

Date	El	%Cracking	Cure
Mar 5th	0.814	5.6%	WMR
Jun 26 th	0.785		WMR- Ig/I50 ft ²
Jun 15-16	0.734		Lithium Relay – Ig/188 ft ²
	0.971		Lithium Relay – Ig/94ft ²

Shrinkage strain

Evaluation of Curing Effectiveness

Curing Compound A

Moisture Loss

Evaluation of Curing Effectiveness

