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OUTLINE

� Present Technology
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Present Testing Technology

� Time of Curing
◦ Low surface concrete strength

◦ Delamination and spalling

� Duration (rate) of Curing
◦ Set Gradient

� Liquid membrane-forming curing compounds 
◦ Only represented by total moisture loss

◦ No attention paid to a design rate of application
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�Limitations of ASTM C 156
� Focus on water retention

� Have several limitations

�Limited to fixed test conditions & application rate

�Difficult to interpret for field application

�Some Other Methods
� New curing technologies: lithium, post treatments

� Multiple applications

� What constitutes quality curing---Is water loss early a bad thing or not?

ASTM C 156



New Approach

� Laboratory Test for Evaluating Curing 
Compound

◦ Relative humidity (RH) measurement

◦ Moisture loss measurement

◦ Concrete surface abrasion test

� Propose an Evaluation Index

� Relate Index to Performance
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Relative Humidity Measurement

� ACMM device to collect RH data

◦ RH data

◦ Ambient temperature

◦ Wind speed

◦ Solar radiation
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Relative Humidity Measurement

� Sealed chamber 

◦ Collect RH data near perfect curing conditions 

� Filtered chamber 

◦ Collect RH data just below the concrete curing surface
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Relative Humidity Measurement

� screen is place over a plate for the filter 
chamber

� thin mortar layer on the screen 

� curing compound is applied on the mortar
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� After placing curing compound , place the ACMM device on the housings in 
the plate

Relative Humidity Measurement



Relative Humidity Measurement

10

� same procedure is applicable for field condition to 
collect RH data



Relative Humidity Measurement
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� Example of RH Data
� Curing compound 1600

� 225 ft2/gal application rate



Indexes for Evaluating Curing

� Evaluation Index

◦ based on maturity or equivalent age of concrete

� Curing Index

◦ through modeling curing as moisture diffusion 
process

◦ based on time dependent diffusion coefficient
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Evaluation Index (EI)

� Equivalent Age (t) of Concrete
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where 

βH = the moisture modification factor
RH = the humidity of concrete
ti = equivalent age of concrete
i = sealed, filtered, and ambient conditions
T = the average temperature of the concrete during time interval ∆t
T0 = the datum temperature with a value of -10 ºC
Trm = room temperature 21ºC



Evaluation Index (EI)

� EI is defined as:
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where 

tf = the equivalent age of the filtered curing condition
ts = the equivalent age of the sealed curing condition 
ta = the equivalent age of the ambient curing condition
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Curing Index
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� Curing process can be represented by the following 
differential equation:
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where

u = suction in concrete (pF)

α = Diffusion coefficient (cm2/sec)

t = time (sec)

Suction in pF = log (capillary pressure)



Curing Index
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Dielectric Constant (DC)
� Apply a thin layer of concrete mortar on top of the cap and spray curing 

compound on it

� Take off the cap and insert the probe into the cylinder when measuring 
the DC readings

� Let the bottom surface of the probe
◦ fully contact with the concrete surface

◦ and read the reading
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τ is related to the curing compound application rate. The higher τ is, better the 
curing quality is.

α is related to curing compound quality. The higher α is, it is more likely that 

curing compounds would diminish more quickly.

β is related to the effective duration of the curing compound.

Dielectric Constant (DC)



Concrete Surface Abrasion Test

� Test concrete surface abrasion resistance based on ASTM 
C944

� By measuring the amount of concrete abraded by a rotating 
cutter in a given time period (10 min, under 22 lb. of load in 
this study)
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Performance vs. Climatic 
Conditions



Cracking Calibration
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Damage Coefficients (C4, C5)
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Design Stress Ratio
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Built-In Gradient
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Curing and Fatigue Damage

� Therefore, evaluation index or curing index 
can be tied to the calibration of cracking and 
allowable wheel load calculation. 

� This can help to better predict the 
performance of the pavement. 
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Test Program

Material and Mixture Design
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Curing Compound



Test Program (Contd…)

Experimental Design
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Environmental Condition

Variable Unit Low Level Medium Level High Level 

Curing compound   A Lithium B 

Application Rate  Ft
2
/gallon 220 120 

w/c of mixture   0.4 0.43 

Wind Speed mph 0 5 



Validation Checking

� Evaluation of Curing effectiveness between 
different curing compounds

� Evaluation of Curing effectiveness under 
different ambient conditions

� w/c ratio = 0.43 for all the results shown in 
the presentation
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Circle----- Curing compound B 
Line------ Curing compound A
Triangle---- Lithium

Red----120 AR
Green ----220 AR

(some tests were conducted by a few people, lack of consistency) 



Dielectric constant & Water content

� Two same mixes applied with high (120 ft2/gal ) and low (220 ft2/gal ) rate of curing compound

� Sample with higher application rate (120 ft2/gal ) shows higher DC and water content over time

� Water content is predicted using a self consistent model developed by Dr. Sang Ick Lee

w/c Curing compound Type Application rate Fixed  ambient condition

0.43 2250 120 ft2/gal & 220 ft2/gal 32˚C, 50% RH, 5 mph wind
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Model for Comparison of Dielectric constant
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Pridicted model (120 ft2/gal) Pridicted model (220 ft2/gal)

y1 = 16.778*(1-exp(-(1/(t*0.013))^0.417)

y2 = 16.47*(1-exp(-(1/(t*0.0171))^0.446)

� Weibull accumulative distribution:

where,

τ = amplifying parameter

β = scaling parameter, and

α = shift parameter.
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120 ft2/gal 16.778 76.923 0.417

220 ft2/gal 16.47 5.848 0.446

Higher 1/β→ Lower rate of reduction of 
moisture→ Better curing 



Victoria, Tx



3/26/2013

100 Ft Test Section
Surface 

Treatment (1)
Lithium Cure (2)

Shrinkage 

Reduction (3)
Resin Cure (13=4) Notes

1 + NO - Tr - None 200 ft2/gal
First half sprayed with Dayton resin, rest 

sprayed with city resin

2 - SB - None +  With 200 ft2/gal manually sprayed with city resin

3 - SB - Tr - None 150 ft2/gal manually sprayed with city resin

3/28/2013

100 Ft Test 

Section

Surface Treatment 

(1)
Lithium Cure (2)

Shrinkage 

Reduction (3)
Resin Cure (13=4) Note

1 + NO + Si +  With 150 ft2/gal All the Lithium are sprayed 

manually at 200 ft2/gal.

The City Resin cure are sprayed 

by using the machine. 150 ft2/gal 

goes two passes, 200 ft2/gal goes 

one pass.

No City Resin was sprayed on 

Section 4, 6, 8, since the Sinak

Lithium sprayed on this section is 

already mixed with resin

2 - SB - Tr plus +  With 200 ft2/gal

3 + NO + Si +  With 200 ft2/gal

4 - SB + Si mix +  With

5 + NO - Tr plus +  With 150 ft2/gal

6 + SB + Si mix - None

7 + SB + Si - None 150 ft2/gal

8 - NO + Si mix - None

9 - SB - Tr - None 150 ft2/gal

Victoria Test Plan



Effectiveness Index (EI)
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� Dayton Resin cure were unevenly sprayed on 

March 26 Section#1 because the thick compound 

clogged the spray gun.

� The other sections are sprayed with City Resin 

cure (except for March 28 Section#8)
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Evaluation Index (EI)

Test Section 8 at Victoria



Curing Index

Section 3 and Section 8, Victoria
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T and RH Gradient

� set gradient around maturity 200 deg C-hr

� leads to curled up position

� set gradient strain was 5×10-4
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T and RH gradient of Section 8 at 8.75 hr 
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Curing Effectiveness

� Can be monitored in laboratory and the field

� Can be indexed to strength and setting

� Moisture Modeling (routinely done)

◦ Examine the factors affect set gradient of concrete

◦ Improved calibration of cracking models

◦ Improved concrete pavement design and  
performance prediction
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CODE_BRIGHT Computational 
Code 

� Coupled  analysis in porous media

� Interaction with the atmosphere
(Olivella, 1995;Guimarães, 2002; Sánchez, 2004) 

� Finite element in space
◦ 1D, 2D and 3D elements 

◦ Monolithic coupling

◦ Full Newton-Raphson

� Finite difference in time
◦ Implicit time discretisation scheme

◦ Automatic time advance

◦ Mass conservative approach for mass    
balance equations

� User-friendly pre/post processing of data



Date EI %Cracking Cure

Mar 5th 0.814 5.6% WMR

Jun 26th 0.785 WMR- 1g/150 ft2

Jun 15-16 0.734 Lithium Relay – 1g/188 ft2

0.971 Lithium Relay – 1g/94ft2
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Evaluation of Curing Effectiveness

Curing Compound A
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NW:  No wind W: With wind NC:  No Curing



Evaluation of Curing Effectiveness
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NW:  No wind

W: With wind

NC:  No curing

Large aggregate particles 
retaining on #8 sieve were 
eliminated

all sands used are 100% passing 
through #8 sieve

Curing compound A


