# Freezing and Thawing of Concrete ACI-201R-16, Chapter 4

Don Janssen Tyler Ley

#### **Conditions for Frost Damage**

- Sufficient Internal Moisture
   Generally > 75-80% saturation
- Freezing Conditions
  - Cold enough to freeze water in pores (colder than 28-30°F)
  - Repeated freezing and thawing increases damage

# **Types of Frost Damage**

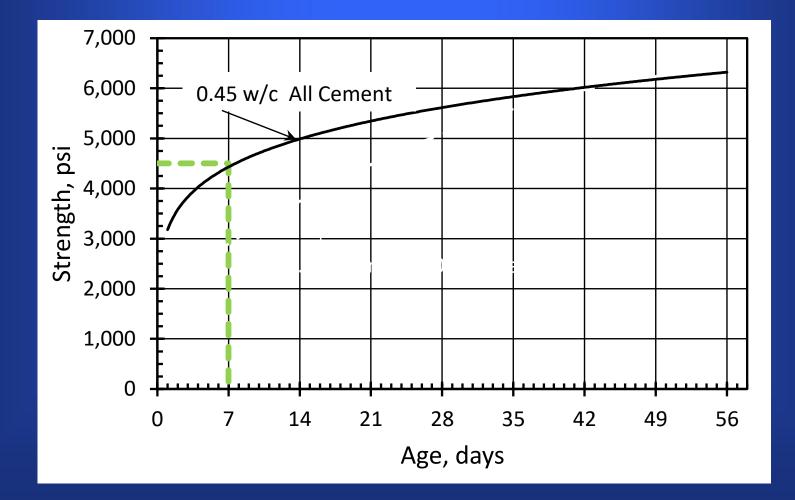
- Surface Scaling
  - -Associated with de-icing salt use
  - -Most common frost damage type
- Internal Damage
  - –Usually requires many freeze-thaw cycles
- D-cracking
  - -Non-durable aggregates

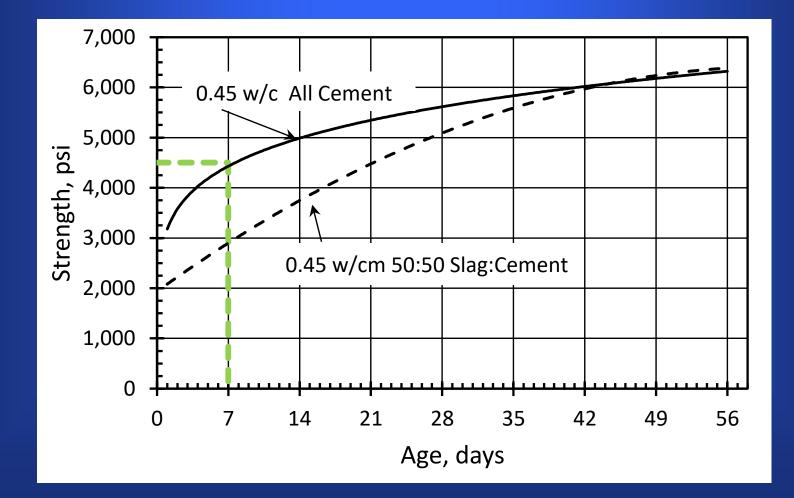
# **Preventing Surface Scaling**

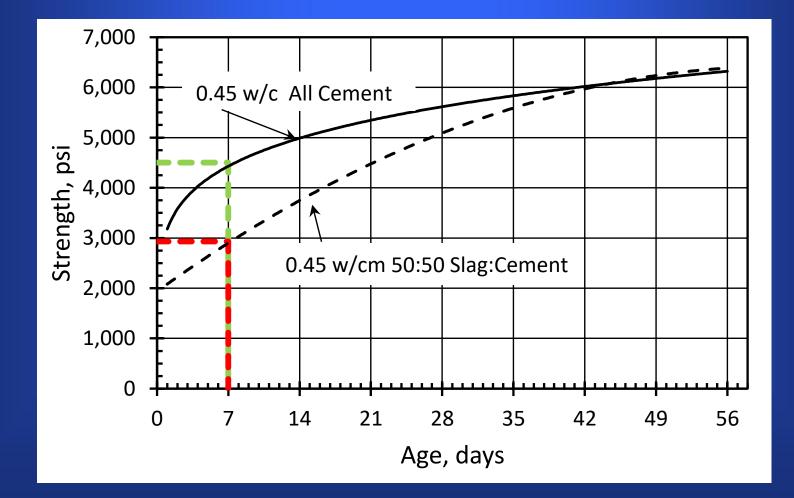
- Maximum w/cm of 0.45
  - Reduced freezable water and reduced permeability
- 4,500 psi before repeated freeze-thaw

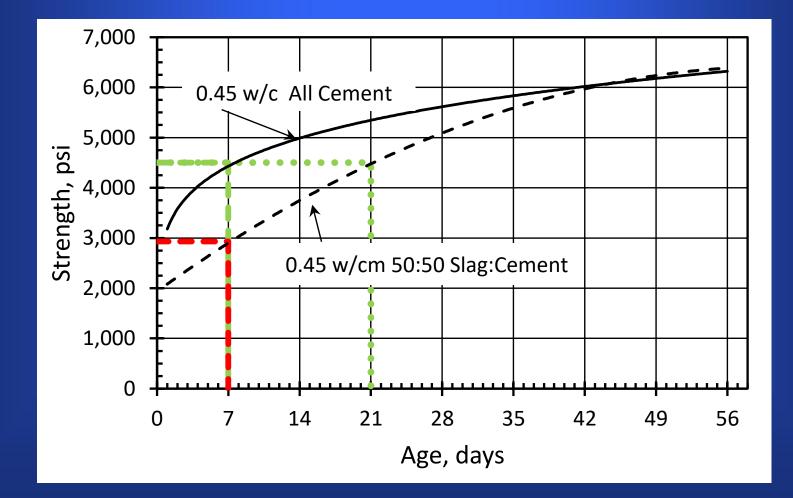
  Adequate curing to reduce freezable water
  Adequate curing to reduce carbonation
  Adequate strength to resist frost expansion
- Entrained air
  - -18% by volume of paste (Table 4.2.3.2.4)

# **Surface Scaling**





**Preventing Surface Scaling so what has changed?** 


- Now 4,500 psi (was 3,500)
- Clarification of:


4,500 psi before repeated freeze-thaw versus  $f'_{c} = 4,500$  psi (ACI 318)

(average strength at time of freeze-thaw versus design strength)









- "Old" Experience of 7-day Curing
   Adequate for all-cement
  - -Not adequate for high cement replacement
- Curing Requirement Should Reflect Actual Mixture Requirements

**Preventing Surface Scaling so what else has changed?** 

Added Exposure Class F3b

 No restriction on supplementary cementitious materials for machine-finished surfaces

- Based on field observations of mixtures with high flyash contents
- ACI 318 Exposure Class F3 still limits supplementary materials

# **Clarification of Air Content Table** (Table 4.2.3.2.4)

| Maximum                | Air content, percent |                       |
|------------------------|----------------------|-----------------------|
| aggregate<br>size, in. | Exposure<br>F1       | Exposure<br>F2 and F3 |
| 3/8                    | 7                    | 7.5                   |
| 1/2                    | 7                    | 7                     |
| 3/4                    | 6.5                  | 7                     |
| 1                      | 6.5                  | 6.5                   |

# **Clarification of Air Content Table** (Table 4.2.3.2.4)

- Air content is 18% of paste
  - Concrete with rounded aggregate often has lower paste content
  - -Air contents calculate to about
    - 1 percentage lower
- Rounded to nearest 0.5%
- Tolerance ±1-1/2 percent



#### **Preventing Internal Damage**

- Maximum w/cm of 0.45 (0.50 for mild)
  - Reduced freezable water and reduced permeability
- 3,500 psi before repeated freeze-thaw

   Adequate curing to reduce freezable water
   Adequate strength to resist frost expansion
- Entrained air

-18% by volume of paste (Table 4.2.3.2.4)
 Slightly less for mild exposure

# **D-cracking**

3 Th south sent.

# **Preventing D-cracking**

- Use durable coarse aggregate
  - D-cracking can happen on corners of vertical surfaces if moisture exposure is adequate
  - State DOT's are best source of information on durability of coarse aggregate

# **Future Changes**

- Examination of Field Exposure Sites
  - Most freeze-thaw data is based on accelerated lab tests
  - Field data will be used to possibly modify future recommendations
    (as was done for supplementary cementitious materials limitation)
- Other Changes to be Determined

## **Comments**?

**Questions?**