ACI Spring 2016 Convention Milwaukee, Wisconsin - April 2016

OVERVIEW OF PRECAST CONCRETE PAVEMENT PRACTICES & RECENT INNOVATIONS

Precast Concrete Pavements

Rapid/Longer Lasting Pavement Rehabilitation

Shiraz Tayabji, <u>stayabji@gmail.com</u> Applied Research Associates, Inc. (ARA) Ellicott City, MD

The Need – Pavement Rehab Under Heavy Urban Traffic A very serious issue throughout urban US

- Shorter closure, but possibly shorter service life (rapid setting concrete)
 - Longer service life, but longer closure (conventional concrete paving)
 - Shorter closure & longer service life (PRECAST PAVEMENT)

Preamble

- PCP technology is not a passing fad. It is here to stay
- PCP technology is used routinely by several agencies for rapid repair and rehabilitation of concrete as well as asphalt pavements
- PCP projects have been successfully constructed in numerous States by contractors with no prior experience with PCP & precast panels can be fabricated by most precaster
- Good availability of precast plants throughout the US

PCP Initiatives in the US (Actively undertaken since mid-1990's)

- FHWA (since mid-1990's)
- > Highway and airport agencies (since 2001)
- Industry (since 2001)
- > AASHTO TIG (mid-2000's)
- > SHRP2 Project R05 (2008 2012)
- FHWA/AASHTO SHRP2 Project R05 products implementation program (2013 current)
 - Tech Support
 - Financial support

PCP Background

- PCP is a recent technology in use since 2001
- Used primarily for <u>RAPID</u> repair & rehabilitation & <u>longer-lasting</u> treatments
 - Panels fabricated off-site, transported to project site & installed on a prepared foundation
 - Only minimal field curing time required
- Typically, night-time work & short work windows
- Typically, repair/rehab along a single lane
 - Multiple-lane repair/rehab possible based on site constraints

Traffic Considerations

- Traffic volume is it heavy enough to preclude other pavement alternatives?
 - If fast-track fixed-form or slipform paving techniques are possible, use of precast pavement may not be the best option!
- Alternate routes
 - If traffic can be staged or detoured, use of precast pavement may not be the best option!

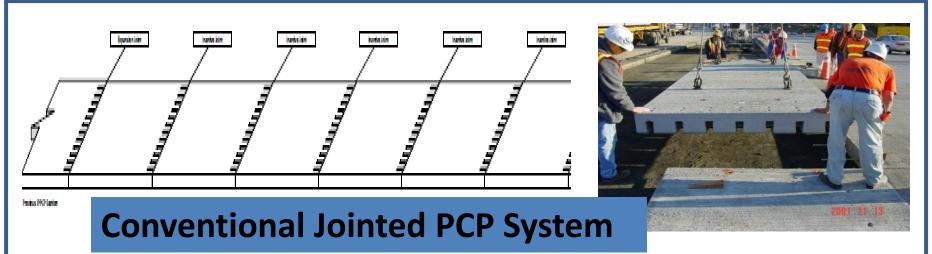
But, if there is only 8 hours or less of lane closures to perform the repair/rehab work, precast pavement should be strongly considered

PCP Systems

For intermittent repairs

- Nominally reinforced panels
- Prestressed panels
- For continuous applications
 - Jointed PCP systems (JPrCP)
 - Nominally reinforced panels
 - Prestressed panels
 - Post-tensioned systems (PPCP) fewer active joints; longer sections

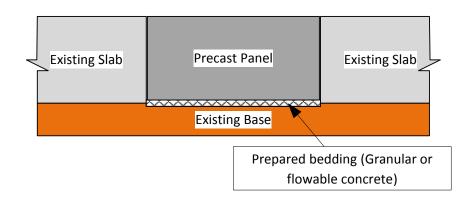
Generic & Proprietary Systems (Components) Available



PCP Systems

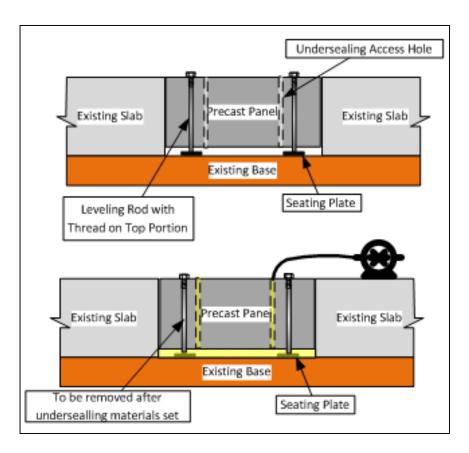
State of Practice - Jointed Systems

Overall Approaches

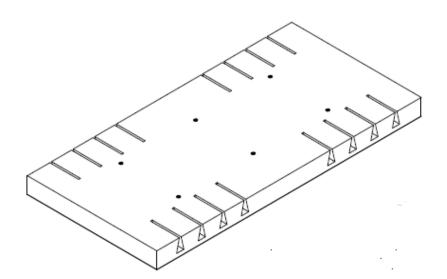

Support Condition

- **1. Grade supported panels are placed directly on grade**
 - Cemented bedding layer may be used (<1/4 in.)
 - Surface grinding almost always required
- 2. Bedding grout supported panels are set above grade using leveling bolts (or shims) and high strength bedding grout is used to fill gap under the panel (Typical gap > 1/4 in & < 1/2 in.)</p>
 - Surface grinding may not be necessary

Load Transfer System

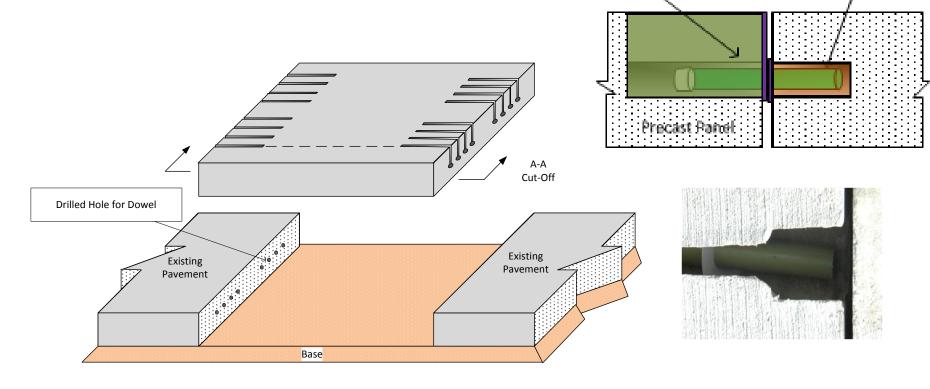

Using slots at the panel surface (several variations)
 Using slots at the panel bottom (one patented system)

Panel Installation Options (Grade placed – Repair & Continuous)


Panel Installation Options (Levelling bolts & thicker bedding - Repair & continuous)

PCP Load Transfer Refinement (USA)

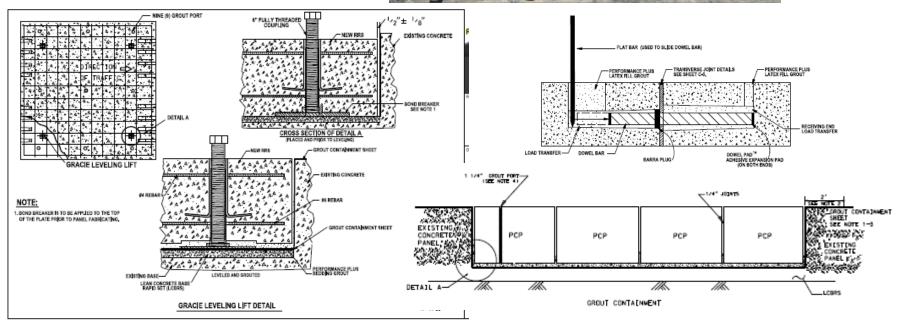
- Alternate method for installing dowel bars at transverse joints
 - Use of a narrow dowel bar slots at the surface for transverse joint load transfer – allows opening to traffic before the dowel bar slots are patched



PCP Load Transfer Refinement (USA)

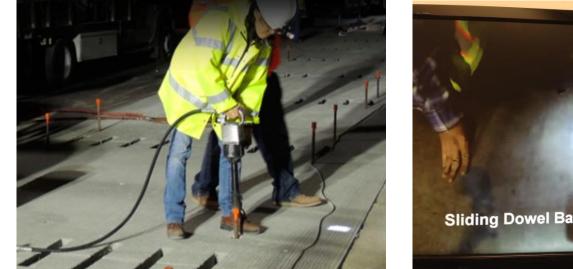
- Adopted by the Illinois Tollway
 - Use of a narrow-mouth dowel bar slots at the surface

Epoxy



California Rapid Roadway Pavement System

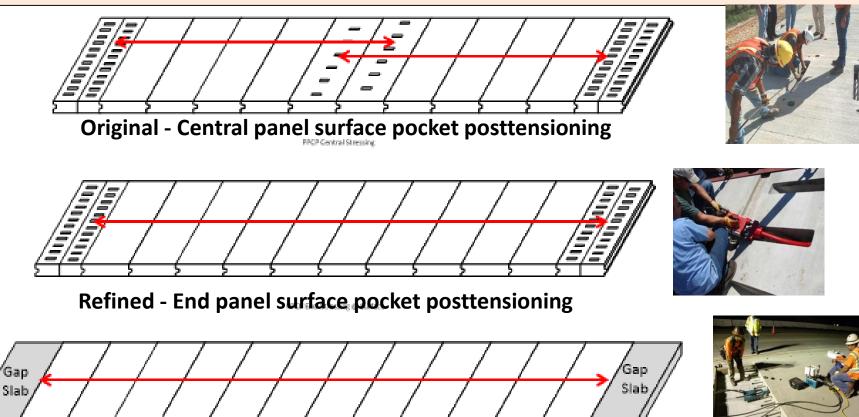
Barra Glide Load Transfer System & Gracie Lift Device Developed in 2013



California Rapid Roadway Pavement System Barra Glide Load Transfer System & Gracie Lift Device

Caltrans Load Transfer Refinement Generic Caltrans Tear Drop Slot System used with Gracie Levelling Lift System (or Shims)

SH 101 design (2015)



I-210 design (2016)

PPCP Systems

(Concept Developed at University of Texas – 2001)

- A number of panels are posttensioned together to result in a posttensioned section length of 200 to 250 ft & induced prestress of 150 to 200 psi
 - Tendons are bonded to the concrete thru grouted tendon ducts

Current - End panel joint face posttensioning and gap panel use

Panel Production vs. Installation Rates

- Panel fabrication rate
 - 8 to 10 panels per day (inside plant jointed)
 - Similar rate for PPCP panels inside plant or outdoor beds
- Panel installation rate
 - Repair 15 to 20 repairs/night
 - Jointed continuous 30 to 40 panels/night (500 to 600 ft)
 - PPCP two posttensioned sections or up to about 500 ft
- So, several weeks (months) of back-log of panels is necessary before installation can begin

<u>NEAR FUTURE EXPECTATIONS</u> REPAIR APPLICATION – 30 TO 40 REPAIRS PER NIGHT CONTINUOUS (JOINTED OR PPCP) – 1,000 + FT/NIGHT

Where to Use Precast Pavement? (Open to Traffic the Next Morning!!!)

Primary Applications (90%+ use)

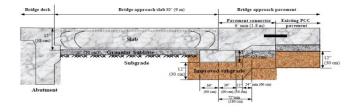
- Heavily-traveled main line interstate/primary system & urban roadways - A critical need on US's aging system
- Interstate/primary system & urban ramps Often no alternative routes and heavy traffic

Special Applications

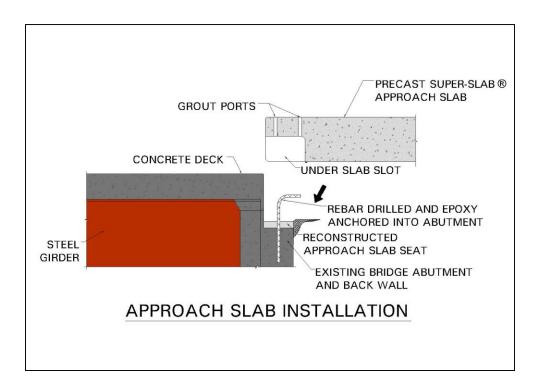
- Intersections Where traffic needs to be maintained
- Bridge approach slabs A large no. of approach slabs across country need to be rehabilitated under traffic
- Underpasses Where height restrictions may limit rehab options
- Bus pads Where alternative bus stop locations are not acceptable, bus pads can be replaced overnight
- Airfield Applications A developing market
- Utility "bridges" Over failed drainage pipes & culverts

Intersections

(Rehab of distressed AC Intersections)


 A very effective option to rehab distressed/rutted AC intersections that carry high volume of traffic, including heavy truck traffic

Bridge Approach Slabs (BAS)


- Thousands of distressed approach slabs exist
 Exhibited by classic "bump" at bridge end/approach
- Causes of failure
 - Settlement of underlying soils
 - Erosion of embankment materials
- Difficult to rehab/replace

- Often repaired with "band-aid" materials
- Precast panels a good fast and permanent repair
 - Full-depth replacement allows opportunity to repair underlying embankment
 - Can be installed in over night or over-the-weekend work windows

Active program underway at the Illinois Tollway to study implementation of precast panels to rehab existing BAS & for new BAS at new integral abutment bridges

Example: Approach Slab on Existing Bridge Abutments

Cross Section at End of Existing Bridge

NY State DOT

Placing panel Over Anchor Rods

Placing panels In One Lane Source: The Fort Miller Co., Inc.

Bus Pad Rehabilitation Hollywood & Santa Monica Blvd. North Hollywood, CA, 2012

Grading Bedding Material

Placing Last panel

Placing

Opened Next Morning


Source: The Fort Miller Co., Inc.

Long-Life Expectations for PCP

- Repair applications 15 to 20 years or to reconstruction of existing pavement
- Continuous applications
 - Original PCC surface service life 40+ years
 - Pavement will not exhibit <u>premature</u> failures and <u>materials</u> related distress
 - Pavement failure=> Result of traffic loading
 - Pavement will have reduced potential for cracking, faulting & spalling, and
 - Pavement will maintain desirable ride and surface texture characteristics with <u>minimal intervention</u> <u>activities to correct for ride & texture, for joint</u> <u>resealing, and minor repairs</u>

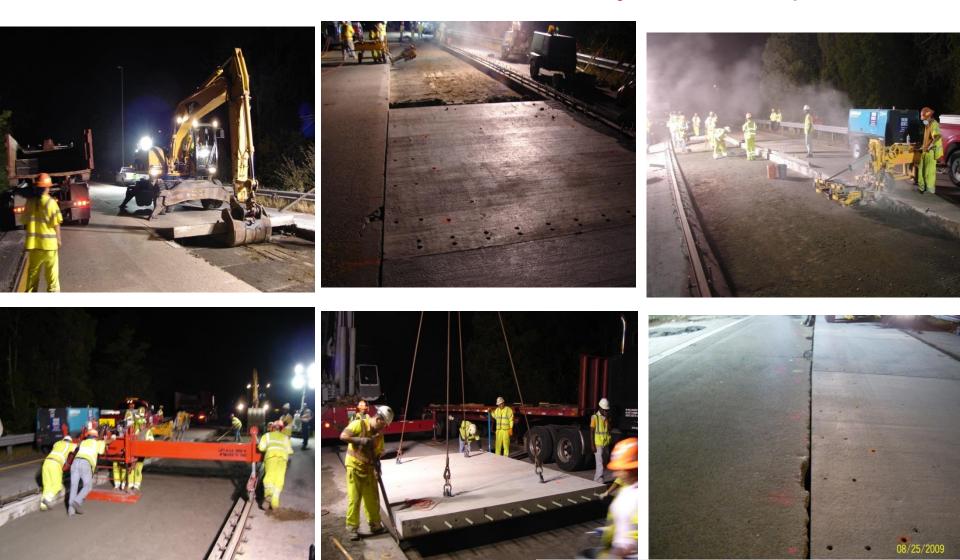
PCP Technical Considerations

Panel Static Lifting Flexural Stresses

					Maximum
	Panel Length		nel Width	Panel	Concrete Lifting
	(ft.)		(ft.)	Thickness (in.)	Stress (psi)
			12	9	39
			24	9	154
	10	36		9	347
As a panel dimension ge longer, pretensioning becomes necessary		_	12	10	35
		ets	12	11	32
			12	12	29
			12	9	39
	12		24	9	154
			36	9	347
		12 12		10	35
				11	32
			12	12	29
	15		12	9	60
		24		9	154
		36		9	347
		12		10	54
		12		11	49
PCI guidelines (PCI 2004)			12	12	45

Panel Fabrication (Current Jointed) – Reasonably Standard & Routine

The Panel Fabrication Process (Current) - Prestressed Panels for Jointed PCP


Panel Support Condition Considerations

- Use of existing base
 - Granular
 - Reworked, compacted & regraded
 - Reworked, compacted, regraded, bedding material applied
 - Stabilized

- Used as is or trimmed; bedding material applied
- Bedding material
 - < ¹/₄ in. fine-grained granular material
 - Thicker layer of rapid-setting flowable fill (RSFF) or grout using elevated panel placement techniques (levelling bolts/shims)
 - High density polyurethane grout
- New base granular or rapid-setting LCB, with or without bedding material

Virginia I-66 (Sept. 2009) Continuous Placement – Fort Miller System (Ramp Lane)

Note: If an extra 6 in. width had been trimmed off, most of the longitudinal spalling would have been taken care of.

New York City - Continuous Jointed PCP Fort Miller System – Rehab of AC Intersections, 2010 Rockaway Boulevard near JFK Airport

Summary

- Although experience with PCP systems is limited, less than 15 years, performance to-date indicate that well-designed and well-constructed PCP systems can be installed rapidly and can be expected to provide long-term service
- The need for the technology is obvious rapid construction and longer-lasting solutions.

