ACI Spring 2016 Convention Milwaukee, Wisconsin - April 2016

FHWA/SHRP2 Precast Concrete Pavement Implementation Assistance Program Projects

Shiraz Tayabji, <u>stayabji@gmail.com</u> Applied Research Associates, Inc. (ARA) Ellicott City, MD

Presentation Focus

- Presentation will provide details related to several precast concrete pavement (PCP) projects funded under the FHWA/SHRP2 Implementation Assistance Program (IAP)
- The completed projects are located in Georgia, Hawaii, Kansas and Texas.
- Projects to be constructed during 2016 and 2017 are located in Alabama, Florida, Louisiana, and Pennsylvania
- The PCP applications include intersections, bus pad and highway ramp rehabilitation.

Highway Agencies Receiving SHRP2 PCP Implementation Awards in 2014 and 2015

FHWA IAP & HfL Supported Projects

- > Wisconsin: Madison Bypass (David Layton)
- > Hawaii: Honolulu H-1 rehab
- Kansas: Fort Leavenworth area intersections and bridge approach slab
- > Texas: Heavily truck-trafficked rural intersection
- Louisiana: Shreveport Entry ramp onto I-20
- > Pennsylvania: Norristown intersection
- > Alabama: Mobile I-165 SB Exit Ramp
- Florida: Chipley bridge approach slab along I-10

PRECAST CONCRETE PANELS FOR INTERSECTIONS AND APPROACH SLAB US-73 LEAVENWORTH, KS

KANSAS PCP DEMO PROJECT

Reconstruction of US-73 on the North side of Leavenworth, KS

- Two intersections at Fort Leavenworth and one approach slab
- Over 67,000 yd² pavement (4,555 yd² PCP)
- 294 Panels (Fort Miller system), 100% grind
- Precast panel thickness: 9 1/8 in.
- Precast panel length: Varies (6-13 ft)
- Precast panel width: Varies (6-16 ft)
- Base: 4 in. thick cement treated base
- Bedding layer over base: Cemented granular material

The Project

Concrete Mix Design

- Forterra (precaster) Priorities
 - 3000 psi at 16 hours, 4000 psi at 28 days
 - 6 to 8 in. slump (HRWR & MRWR)

<u>KDOT Priorities</u>

- Air Content at point of placement > 5%
- Spacing Factor < 0.008 in.
- Low Permeability

Panel Production/Installation

Cast Date / Placement Date

Panel Cost

Panel Fabrication

Panel Installation Lane closures ranged from 7:00 PM – 5:00 AM

Completed Project

Lessons Learned

- Cost is not prohibitive
- Construction sequence/planning is critical
- Can meet KDOT and Precast mix design requirements
- Crews pick up on installation quickly
- Continuous grind is not a substitute replacement for precision placement

Hawaii SHRP2 R05 IAP Funded Project

- Along the eastbound section of Hawaii H1 (morning rush hour traffic to Honolulu area)
- A 200 ft section had settled and had been feathered overlaid with AC (max. settlement about 3 to 4 in.) across all six lanes

Hawaii H1 PCP Project - (2015)

- 14 panels/lane for 6 lanes(continuous)
- Constructed March to May 2015
- Work delayed due to shortage of bedding grout

16

Project Details

- Use of the Rapid Roadway Pavement system with Barra Glide dowels and Gracie lift system
- Panel thickness: 8 in.
- Panel width: 12 ft
- Panel length: 12 ft
- Total panels: 84 (168 ft long section)
- Standard Rapid Roadway system panel details
- Panels installed at night typical lane closures from about 8 pm to 5 am

Rapid Roadway Pavement System Barra Glide Load Transfer System & Gracie Lift Device Developed in 2013

Contractor Panel Fabrication

Contractor fabricated panels near the project site, using wood/plywood forms

Hawaii H1 PCP Demo Project

Hawaii H1 PCP Demo Project

Some Daytime Activities after Morning Rush Hour

Completed Section – Sept. 2015

Texas Energy Sector Intersection Application

The Challenge: Excessive rutting in AC pavements due to heavy truck traffic

The Intersection Demo Site

Texas Intersection PCP Demo (April/May 2016) (Rehab of intersections damaged by energy trucks)

Bid/Cost Data \$425/SY for Intersection Construction = \$1,550,000 Estimated cost of precast panel: \$200/SY Preliminary panel cost: \$180 to \$225 SY

TABLE OF PANEL QUANTITIES			
PANEL	SIZE	NO.	
P-1	8 x 18	78	
P-2	8 x 12	39	
P-3	8 × 18	118	
TOTAL NO. C	OF PANELS	235	
TOTAL AREA = 31,968.00 SQ.FT.			
TOTAL NO. OF 1½" x14" LONG DOWEL BAR = 4,532			

Texas Panel Details

- Base layer: compacted subgrade and 4" HMA layer
- Panels placed directly over HMAC layer
- "Generic" Panel Design
- 12" Thick Panels
- Panels pre-tensioned in the long direction.
- Doweled on all interior sides.
- Grout holes for filling voids beneath panels.
- Exterior panels anchored thru base layers.

Texas April 2016 Installation

Exit 2 Ramp on I-165 to US 90 Mobile, Alabama

Exit 2 Ramp from I-165 to US 90

•	Heavy Truck Traffic	40	3 - 4
	– Headed to Port of Mobile	346 544	4-5 5-6 6 7
•	Excessive rutting requiring frequent maintenance	716 603 438 359 384	0 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12
		423	- PM -
		402 422 401 585 743	12 - 1 1 - 2 2 - 3 3 - 4 4 - 5
	Retarkit	753 325 181	5 - 6 6 - 7 7 - 8
		123 128	8 - 9 9 - 10
		72 41	10 - 11 11 - 12
		8188	TOTALS :

Mobile Intersection Rehab Project (I-165 SB Exit Ramp at New Bay Bridge Road)

Mobile Intersection Rehab Project (I-165 SB Exit Ramp at New Bay Bridge Road)

The Shreveport PCP Demo Project (In preparation for possible use of PCP for a major rehab along I-20 in the Shreveport area)

The Shreveport Precast Pavement Project

The Shreveport Precast Pavement Project

Norristown, PA Intersection Rehab Project (Main and Markley Streets)

Rehabilitate the intersection with least impact on users

Norristown Intersection Rehab Project (Main and Markley Streets)

Rehabilitate the intersection with least impact on users

Florida – Bridge Approach Slab Replacement, Chipley

- Location I-10 west bound over Apalachee North Railroad, on the east end of the west bound bridge.
- Year Built = 1976; ADT Total = 9,300; Truck % = 30
- Condition: Slab cracking and slab settlement
- Slab layout/size: Skew at abutment; length: ~ 25 to 28 ft; 2 lanes and two shoulders, possibly requiring 4 panels as a minimum

The I-10 Bridge Approach Slab

The I-10 Bridge Approach Slab

Preliminary option being considered: 4 prestressed panels, about 30 ft long, with bedding grout support over a stabilized base.

Steps:

- **1.** Prepare abutment seat over two nights
- 2. Place shoulder panel and lane panel , each night (2 nights)
- 3. Postensioned in the transverse direction longitudinal joint faces epoxy-coated and under stress

- PCP performance to-date indicate that well-designed and well-constructed PCP systems can be installed rapidly and can be expected to provide long-term service
- Precast concrete pavement technology is an implementable technology and continues to evolve.
- And, more highways agencies are finding PCP technology to be an important strategy for rehabilitating distressed highway pavements.

