

High Strength Welded Wire Reinforcement for High Performance Concrete

By: David H. DeValve, PE

Spring Convention April 17-21, 2016 Hyatt & WI Centre C-202E– Milwaukee, WI Tue. 4-19-2016 1:30-3:30 PM Session

Overview – Learning Objectives

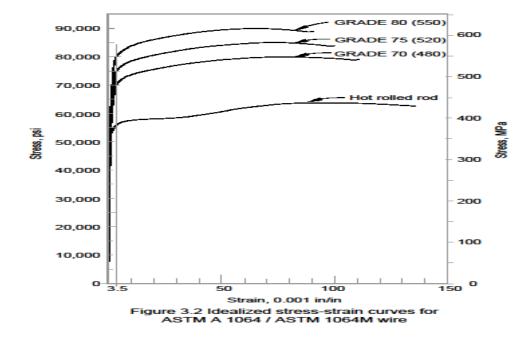
- Brief History of High Strength Welded Wire Reinforcement
- How is HS WWR Made
- Why the recent need/interest in HS Reinforced Materials
- Details and uses of HS WWR
- Where we are headed with HS WWR.

Brief History Wire & HS

- FIRST PATENT'S ISSUED FOR WWF/WWR 1901.
- EXTENSIVE USE IN BUILDING FLOORING SYSTEMS OF MANY SKYSCRAPERS IN Early to Mid-1900's.
- MUCH USE OF IN BUILDING INTERSTATE HIGHWAY SYSTEM OF THE 1950's, & 1960's.
- BEGAN RESEARCH & TESTING OF HIGHER STRENGTH WIRE IN THE 1950's & 1960's [PCA research, <u>....others]?!</u>
- FIRST APPEARING IN CODE AS (Grd. 80 ksi) in 1977 ACI 318 CODE. & IN ASTM CODES IN 1970's.

How is HS WWR Made

- We can get multiple grades form the same rod size (Grd. 60, 65, 70, 75, 80, etc.).
- With more cold working (drawing), the more reduction in area, the higher the wire strength.
- The Mfg. limits the amount of cold working draw down – we can do to a %(25-50) in area of original wire rod.



VIDEO OF ROD ROLLING – ~120s~4400 LBS.

PLOT AS IN ACI-'WWR GUIDE'

Chart/plot to illustrate this -!

W-Rod Size-dia	Rod Chemistry	Rod Area/Dia.	% elongation	WWR	
in (mm)	AISI/SEA	in2/100 (mm2)/	% reduction	Grade-ksi (Mpa)	
	10XX	Dia., in (mm)			
3/4" (19)				100 (689)	
3,4 (13)	1012-1018	D31 (MD200)		80 (551)	
	1012 1015	0.625 (15.9)		70 (482)	
5/8" (15.9)	(1008)	0.025(15.5)		60 (414)	
11/16"(17.5)				100 (689)	
	1012-1018	D25 (MD161)		80 (551)	
		0.561 (14.25)		70 (482)	
9/16"(14.3)				60 (414)	
5/8" (15.9)				100 (689)	
5/8 (15.5)	1012-1018	D20 (MD130)		80 (551)	
	1012-1018	0.504 (12.8)		70 (482)	
1/2"(12.8)	(1008)	0.304 (12.8)		60 (414)	
1/2 (12.8)	(1008)			60 (414)	
9/16"(14.3)				100 (689)	
	1012-1018	D15 (MD97)		80 (551)	
		0.437 (11.1)		70 (482)	
7/16"(11.1)				60 (414)	
1/2"(12.8)				100 (689)	
1/2 (12.0)	1012-1018	D11 (MD71)		80 (551)	
	1012 1010	0.374 (9.5)		70 (482)	
3/8"(9.5)		5.574 (5.5)		60 (414)	
2, 0 (0.0)					
5/16"(7.9)				100 (689)	
	1012-1018	D4 (MD26)		80 (551)	
		0.226 (5.7)		70 (482)	
1/4"(6.35)				60 (414)	

Cold working - Drawing

- Strength depends on chemistry, rod size, and amount of drawing going into rod...
- Limits from drawing of rod (wire)?!
 - For HS barbwire fencing 150-170 ksi (1045)
 - For Strand 250-270 ksi

Comparing Product Chemistry Reinforcing Products-all different

- Chemistry variably even bar, wire sizes.
- Ref. ACI 439.2R "Report on Steel Reinf. Material Properties & U.S. Availability"

439.4R-09 Report on Steel Reinforcement - Material Properties and U.S. Availability

American Concrete Institute Always advancing

	ACI 439.4R-09	
	Report on Steel Reinforcement— Material Properties and U.S. Availability	
aci	A39.4R-09 Report of Reinforcement - Ma and U.S. Availability American Concrete Institute*	terial Properties

↓ Description(Abstract)

https://www.concrete.org/store/productdetail.aspx?ItemID=439409&Format=DOWINLOAD[4/5/2016 11:58:20 AM]

CHART SHOWNING REINF. PRODUCTS VARIABLE CHEMISTRY

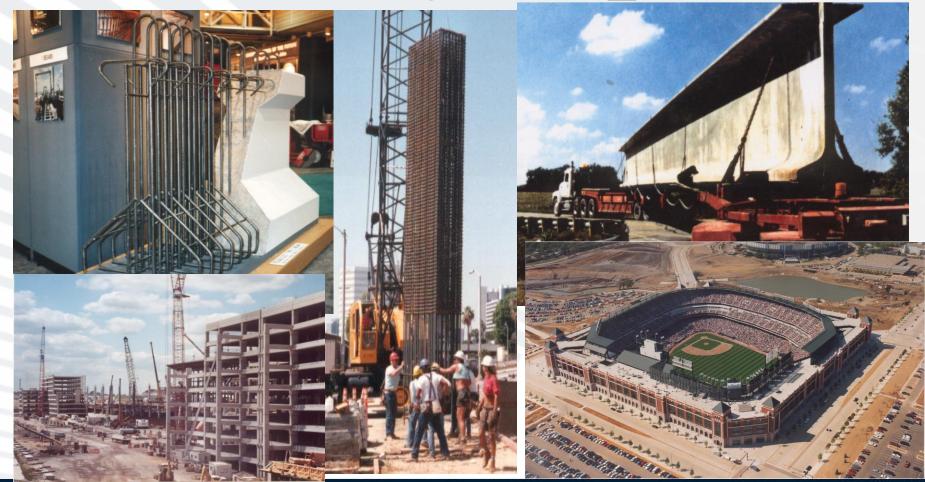
ACI 439.2R			Reinf. Chemistry Chemical Element Comp. (%)							App. X-X
ksi (MPa) ASTM-spec.		Eng. (SI)								
	AISI/SEA	size	carbon	Manganese	phosphorus	Sulfur	Silicon	Nitrogen	Chromium	
A615,-M Bar		#3 (10)	0.38-0.45	0.85-0.95	0.035	0.045	0.2-0.3			
60,75,80		#4 (13)								
(420,520,550)		#5 (16)								
		#7 (22)	0.39	1	0.018	0.037	0.39		0.2	
			[Ni-0.13]	[Mo-0.038]	[Cu-0.39]	[CE-0.56]	[V-0.0]			
		#11 (36)								
A706,-M Bar		#3 (10)	.2630	1.2-1.3	0.035	0.045	0.2-0.3		0.19	
60,75,80		#4 (13)	.2030	1.2-1.3	0.035	0.045	0.2-0.3		0.19	
(420,520,550)		#5 (16)								
(420,320,330)		#7 (22)	0.28	1.18	0.028	0.028	0.17			
		<i>" (LL)</i>	[Ni-0.09	[Mo-0.02]	[Cu-0.29]	[CE-0.48]	[V-0.24]			
		#11 (36)	[0.00	[110 0101]	[00 0.20]		[[0.2.1]			
A1064,-M Wire	1008	Welded grade	.0610	0.3-0.5	0.025	0.03	0.1-0.18	<0.012		
60,75,80	1026	W/D4-W/D31	[Ni-<0.20]	[Cr-<0.20]	[Mo-<0.08]	[Cu-<0.80.]	[V-<0.002]			
(420,520,550)										
	1008	Drawing grade	.0610	0.3-0.5	0.025	0.03	0.1-0.18	<0.009		
		33	[Ni-<0.08]	[Cr-<0.08]	[Mo-<0.02]	[Cu-<0.75]	[V-<0.002]			
A1035,-M Bar	91X0	#3 (10)	0.15	1.5	0.035	0.045	0.5	0.05	8.0-10.9	
100,120	41X0	#4 (13)	0.2						4.0-7.9	
(690,830)	21X0	#5 (16)	0.3			- A			2.0-3.9	
		#8 (25)				/				
		#11 (36)								
Strand A416,+										
250,270										
(1725,1860)										
(1723,1000)										

Why The Recent Need/Interest in HS Reinforced Materials

- Higher Strengths of concrete mixes [>40 ksi].
 - in 1960's [>5ksi]; thru 1980's [>10ksi]; now [>20ksi]. NC(3-10), HSC(10-20), UHPC(20-40+, <u>42</u>).
- Need for greater load resistance at service conditions.
- More emphasis on performance and resiliency of finished product - LCC. Better maintenance & service life.
- Reduce congestion at critical sections (25%+)

How Can HS WWR Help?

- Prefabricated cages can help save time and labor cost in assembly [on site or precast]
- Higher strengths where is the limit?!
- Reduce congestion provide relief in tight areas
- Design Aids <u>www.wirereinforcinginstitute.org</u>



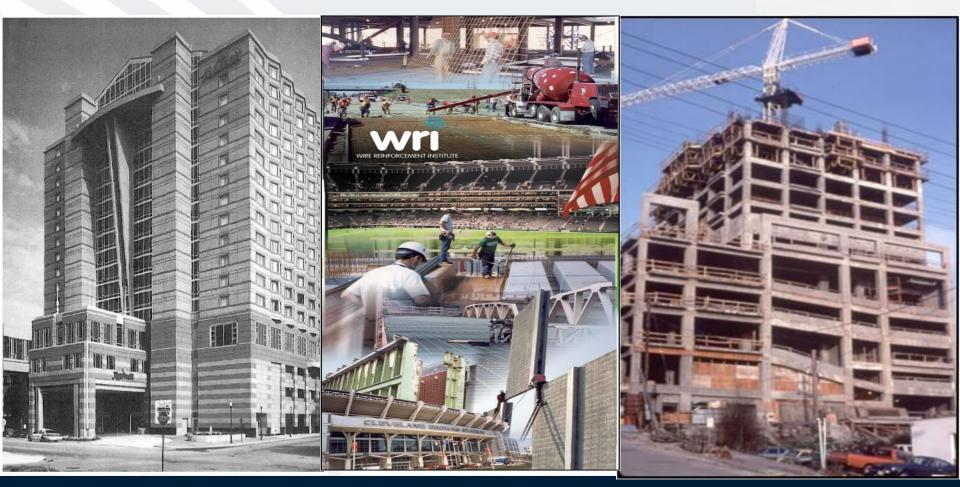
Details & Uses for HS WWR-Transp.

- In Precast Bridge Beams & Elements:
 - I-Beams or T-beams, box beams, etc.
 - Piers Sections, foundations
 - Retaining Walls, Abutments, MSE Walls
 - Precast Pavement Sections
- In Box Culverts or RC Pipe CIP or Precast



Product Examples – P_C / CIP

Other Transportation photos



Details & Uses for HS WWR Bldgs.

- In Precast Elements:
 - Inv.-T-beams, Dbl-T's, columns
 - Retaining Walls, MSE Walls
 - Precast Wall Panels Facing panels, strucutral
 - Tilt-up Panels
- CIP components:
 - Foundations
 - Slabs, Elevated Decks, etc

Bldg. Photos ??

Where is HS WWR Headed?

- Testing to reach higher strengths...limits?!
- Updating on-line design aids at WRI website.
- ACI soon to publish 'WWR design/construction guide.' ACI 439.3R.
- Wire Specifications now all in a Standard
 - ASTM A1064 4 prior archived.
 - AASHTO in process to combine into one.

Summary & Conclusions

- WWF/WWR has been around >110 yrs.
- HS WWR (~80 ksi) >50 yrs.
- Can be used in many products to expedite process and time to delivery.
- Beginning testing to determine limits of WWR.
- Updating Codes, Standards, Design Aids to assist concrete industry in building better products.

Thanks, Any Questions????

Contact Information: David DeValve, PE <u>ddevalve@oklahomasteel.com</u> (580) 795-6007