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Objective and scope

Key questions:
• What are the implications of the 

observable damage?

• What is the capacity in the damaged state?

• What is the capacity after epoxy repair?

Focus is on ‘moderate’ plastic hinging 
damage:
• No crushing of core concrete

• No buckled or fractured reinforcement

• No wide shear cracks indicating yielded 
transverse reinforcement

Focus is on beams, but the research has 
implications for columns and walls



Test program (17 identical beam specimens)

~2.6m

Complies with ACI 318 SMRF and 
NZS 3101:2006 ‘ductile’ beam

Marder, K., Motter, C. J., Elwood, K. J., & Clifton, G. C. (2018). Testing of Seventeen Identical Ductile 
Reinforced Concrete Beams with Various Loading Protocols and Boundary Conditions. Earthquake Spectra.
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Loading protocols

Type CYC Type LD-1 Type LD-2

Type CYC-NOEQ Type P-1 Type P-2

1.4% peak drift during 
earthquake

2.2% peak drift during 
earthquake

Red = Earthquake-type displacement history

LD = Earthquake displacement history derived 
using a long duration ground motion

P = Earthquake displacement history derived 
using a pulse-type ground motion



Effect of moderate-level loading cycles

VS

No change in deformation capacity! 

CYC CYC-NOEQ

Marder, K. J., Motter, C. J., Elwood, K. J., & Clifton, G. C. (2018). Effects of variation in loading protocol on the 
strength and deformation capacity of ductile reinforced concrete beams. Earthquake Eng and Structural Dynamics



Effect of moderate-level loading cycles

Variation in energy dissipation due to the different 
loading protocols carried through until failure.

Similar energy dissipation 
regardless of loading 
up to 2.2%



Reduction in steel strain capacity
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Adapted from Pussegoda (1978)



Reduction in steel strain capacity
-Low-cycle fatigue 

4db

Strain demands from bar from long-duration 
beam test scaled to 6% max strain

Marder (2018)



Reduction in steel strain capacity
- Strain ageing

Data: Restrepo-Posada et al (1994) and Loporcaro et al (2016)

NZ Guidelines steel strain limit

NZ Guidelines probable uniform strain



Reduction in steel strain capacity
- Strain ageing + LCF

[s/db = 6]

Typ. pulse GM Typ. subduction or 
other long duration GM?? 

For large strain cycles, 
strain ageing can reduce 

remaining cycles to 
failure by ~50%.

Ghannoum and Slavin (2016)

Loporcaro (2017)
2ea



So does moderate damage ‘reduce’ the 
residual capacity?

LD-2 LD-2-S P-2 CYC-NOEQ

• Stiffness is reduced

• Strength is not reduced

• Deformation capacity is 
not ‘reduced’ – but post-
earthquake assessments 
may provide insight for 
improved assessment of 
deformation capacity 



Damage  Drift capacity?
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How much stiffness is lost?

Circular columns - after previous shake table tests

Beam specimens - after initial earthquake loadings

Inverse of displacement ductility

Conservative estimate for low ductility demands
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How to estimate the peak deformation 
demands during the damaging earthquake?

Existing post-earthquake 
assessment guidelines use the 

maximum residual crack width as 
a key damage indicator
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• Very important to understand the demands imposed on a damaged 
building before trying to assess it.

• No sense conducting a detailed seismic assessment on a damaged 
building if you can’t evaluate how it responded in the first earthquake!



Residual crack widths versus elongation
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Similar residual 
crack widths!



Distribution of cracking metrics?
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indicator of 
low rotation 

demands
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Columns & Walls?

0.075𝐴𝑔𝑓′𝑐
Encina et al. (2017)



Epoxy repair
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Epoxy repair

Residual elongation at the time of repair causes 
an increase in cumulative elongation (and 

therefore longitudinal reo strain!)

• Post-repair strength increases as a result 
of higher reo strain.

• Deformation capacity is similar between 
repaired and undamaged cases



Repair after failure – strain aged bars

Damage after original test:
Bars only buckled on one 
side. Approx. 25mm 
residual elongation.

Unbuckled bars left in place

New bars welded in on side 
with buckled bars

Old concrete hydro-demoed

New concrete poured



Repair after failure – strain aged bars

Testing six 
months after 
original test. 
Strain aged 
bars again 
didn’t buckle
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Summary

• Prior loading cycles below 2% drift have minimal 
impact on drift or energy dissipation capacity.

• Residual crack widths alone do not provide 
reliable estimate of peak drift demands.

• Prior earthquake loading results in reduction in 
stiffness proportional with ductility demand.

– Epoxy repair can recover 80% of original stiffness



Thank you





What about low-cycle fatigue?

Figure taken from Ghannoum and Slavin (2016)

Coffin-Manson equation: 𝜀𝑎 = 𝜀 ′𝑓 2𝑁𝑓
𝑐

For unbuckled bars: 𝜀𝑎 = 0.093 2𝑁𝑓
−0.41

Equivalent to 40 cycles at a strain reversal of 0.03



What about low-cycle fatigue?
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Damage  Drift capacity?
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Drift Capacity 
- limited by sliding shear 

 Single crack w = 2-3mm,
sliding shear will limit 
drift capacity.

 But still above NZS 3101 
drift capacity.


