

Multiscale Characterization and Modeling of Electron Kinetics in Concrete Engineered with Carbon-Based Nanomaterial Networks

- Panagiotis A. Danoglidis¹, Rohitashva Kumar Singh², Maria S. Konsta-Gdoutos³
- Assistant Professor of Research, Department of Civil Engineering, Center for Advanced Construction Materials panagiotis.danoglidis@uta.edu
- ²PhD Student, Department of Civil Engineering, Center for Advanced Construction Materials <u>rxs6813@mavs.uta.edu</u>
- ³Professor of Civil Engineering, Associate Director, Center for Advanced Construction Materials maria.konsta@uta.edu

ACI Fall Convention 2023 Measuring, Monitoring and Modeling Concrete's Electrical and Thermal Properties October 29 – November 2, 2023, Westing Boston Seaport District & Boston Convention and Exhibition Center Boston, MA

Modification of Electron Kinetics in Nanoengineered Concrete Using Highly Conducting Carbon-based Nanomaterials

Nano-scale

Formation of conducting network of continuously interconnected carbon-based nanomaterials, i.e., carbon nanotubes (CNTs)

- Increased electron tunneling by minimizing the CNT-CNT distance, a.k.a. tunneling distance, d_t
- ✓ Controlled concentration of electrons available for electrical conduction, i.e., energy density, *dl/dV*

- E-Conducting Concrete with unique electrical properties
- ✓ High electrical conductivity
- Controlled dielectric permittivity

Materials and Experimental Program

SEM image of monodispersed CNT

28-day Cement Mortar w/c/s: 0.485/1.0/2.75 CNTs: 0.05 - 0.3 wt%

Specimens Diameter: 1.2" (30 mm) Height: 0.6" (14mm)

- \checkmark Tunneling distance, d_t
- ✓ Electron Density, dI/dV

1) Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S.. United States Patent US9,365,456 (B2) — 2016-06-14 2) Hersam, M.C., Seo, J-W.T., Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S.. United States Patent, US8,865,107(B2)-2014-10-14

3) Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S.. United States Patent No. 9,499,439 (B2) — 2016-11-22

Electrical Conductivity, σ

True material property that indicates the material's ability to conduct an electric current

$$\sigma = \sigma_m \exp\left(-\frac{\sigma_i}{d_t} \frac{2.4uR^2}{l(V_{eff})^2/3}\right)$$

 $\sigma_{\rm m^{\prime}}$ electrical conductivity of the matrix (S/m) $V_{\rm eff^{\prime}}$ effective volume of nanofiber in the matrix

Dielectric Permittivity, ε

True material property that represents the material's capacity to store electrical energy

$$\varepsilon = \frac{1}{\frac{dI}{dV}} \varepsilon_0 A$$

 ε_{0} , Dielectric permittivity of vacuum A, Area of in-plane current path

Topographical Imaging and Property Mapping in Nanomodified Cementitious System

3.5 pA

- 5 nm Topographical Imaging of 28-day CNT reinforced mortar
- Ultra-low Current Mapping
 - Pikoampere (pA): 10⁻¹⁵ A
 - Attoampere (aA): 10⁻¹⁸ A

2 aA

Electrical Resistivity of CNT Reinforced Mortars Electrochemical Impedance Spectroscopy Measurements

Electron Mobility is not Detected Within the Insulating Cementitious Matrix

Tunneling distance, d_t : N/A

Electrical Conductivity, σ_m , of 28-day mortar, σ_m , was calculated through Electrochemical Impedance Spectroscopy measurements

 $\sigma_m = 1.1 \, S/m$

S: Cross section of the specimen *L*: the distance between electrodes

Electron Mobility Mechanism of CNT Networks Within Cementitious Matrix Current Mapping in 0.05 wt% CNT Mortars

UTA

BRUKER

4 aA

Electron Mobility Mechanism of CNT Networks Within Cementitious Matrix Tunneling Distance in 0.05 wt% CNT Mortars

High Tunneling Distance d_t

Low electron mobility

4 aA

3.5 pA

Electron Mobility Mechanism of CNT Networks Within Cementitious Matrix Tunneling Distance in 0.05 wt% CNT Mortars

Zare, Y. and Rhee, K.Y., 2020. Polymers, 12(1), p.114.

Current Mapping of CNT Mortars

M + CNTs 0.05 wt%

M + CNTs 0.1 wt%

Gradual Formation of Continuous CNT Networks Within Cementitious Matrix

M + CNTs 0.05 wt%

M + CNTs 0.1 wt%

100 nm

100 nm

0.1 wt% CNT mortars $d_t = 67 \text{ nm} < 80 - 70 \text{ nm}$

0.1 wt% is the critical amount of CNTs that denotes the formation of a continuous electrically conductive network, i.e., percolation threshold

Electrical Conductivity of CNT Reinforced Mortars

✓ Decrease of d_t in CNT networks

 ✓ +70% Higher electrical conductivity using 0.1 wt% CNTs

Electrical conductivity values obtained from Electrochemical Impedance Spectroscopy Measurements*

	Electrical conductivity (S/m)
Mortar (M)	1.1 ± 0.2
M + CNTs 0.025 wt%	1.3 ± 0.2
M + CNTs 0.05 wt%	1.6 ± 0.2
M + CNTs 0.08 wt%	1.9 ± 0.1
M + CNTs 0.1 wt%	2.2 ± 0.1

Uninterrupted Electron Mobility Through Percolative CNT Networks CNTs 0.15 wt%

Electron Mobility Mechanism in non-percolative and percolative CNT networks within cementitious matrix

Electron Density in CNT Reinforced Mortars CNT amounts up to 0.1 wt% (percolation threshold)

15

100 nm

Electron Density in CNT Reinforced Mortars

CNT amounts higher than 0.1 wt%

Dielectric Permittivity of CNT Reinforced Mortars

Nanoscale interfaces Play a Key Role on the Bulk Electrical Properties of Nanoengineered Concrete

M+CNTs 0.1 wt%

Electron Density of the CNT/C-S-H Interface M+CNTs 0.1 wt%

5 nm

Dielectric Permittivity of the CNT/C-S-H Interface M+CNTs 0.15 wt%

5 nm

Use of CNTs at amounts

• Up to 0.1 wt% (percolation threshold)

Gradual formation of continuous CNT networks

- $\checkmark \quad \text{Reduced tunneling distance} \rightarrow \text{Higher Electrical Conductivity}$
- ✓ Increased electron density → Lower Dielectric Permittivity
- > 0.1 wt% Continuous CNT network is established
 - ✓ Negligible tunneling distance → High Electrical Conductivity of 2.5 S/m
 - \checkmark Decreased electron density \rightarrow Higher Dielectric Permittivity

Conclusions

- Tunneling AFM is a useful tool for identifying the tunneling distance and electron density related to the electron mobility in nanostructured systems
- Tunneling distance and electron density are essential for the evaluation of the bulk electrical conductivity and dielectric permittivity of nanocomposites

Current mapping of Percolative CNT networks

Acknowledgements

The authors would like to acknowledge the financial support of the National Science Foundation – Partnerships for International Research and Education (PIRE) Research Funding Program "Advancing International Partnerships in Research for Decoupling Concrete Manufacturing and Global Greenhouse Gas Emissions" (NSF – PIRE – 2230747).

Advancing International Partnerships in Research for Decoupling Concrete Manufacturing and Global Greenhouse Gas Emissions

Partnerships for International Research and Education (PIRE)

Thank you!

Maria S. Konsta-Gdoutos Professor of Civil Engineering Associate Director, Center for ACM maria.konsta@uta.edu

https://cacm.uta.edu/