

Turner-Fairbank

The Influence of Accelerating Admixtures on the Electrical Resistivity of Cement Pastes

American Concrete Institute Fall 2023, Boston MA

November 1, 2023

Luca Montanari Luca.montanari@arup.com Graduate Student at University of Texas at Austin

Maria Juenger mjuenger@mail.utexas.edu

Michelle Cooper

Michelle.Cooper@dot.gov

Disclaimer

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this presentation only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

Authors

Luca Montanari

lucopr@gmail.com Graduate Student The University of Texas at Austin

Michelle Cooper

Michelle.Cooper@dot.gov Concrete Materials Research Engineer <u>Fe</u>deral Highway Administration

Dr. Maria Juenger

mjuenger@mail.utexas.edu Professor The University of Texas at Austin

Acronyms

- Acc Accelerator
- BR Bulk Resistivity
- Cl Chlorides
- DOH Degree of Hydration
- **FF** Formation Factor
- FHWA Federal Highway Administration
- HES High Early Strength
- N Nitrate

OPC	Ordinary Portland Cement
PSR	Pore Solution Resistivity
SCM	Supplementary cementitious materials
SR	Surface resistivity
TFHRC	Turner-Fairbank Highway Research Center
TGA	Thermogravimetric Analysis
W/CM	Water-to-cementitious materials ratio

Outline

Background

- Research Objectives
- Materials and Experimental Methods
- Results
- Summary
- Major Takeaways

Background

- Repair of concrete infrastructures relies on High Early Strength (HES) Concrete Mixtures
- ► HES concrete mixtures characterized by:
 - ▷ High cement content
 - ▷ Low W/CM
 - Low-to-zero SCM content

▷ <u>High dosage of accelerators and water-reducing admixtures</u>

Background

High dosage of accelerators and water-reducing admixtures

Pore Solution Composition in Typical Concrete: Na⁺, K⁺, SO4²⁻, Ca²⁺, OH⁻ Pore Solution Composition in Concrete with Accelerators: Na⁺, K⁺, SO₄²⁻, Ca²⁺, OH⁻ + (Cl⁻, NO₂⁻, NO₃⁻, SCN⁻, ...)

U.S. Department of Transportation Federal Highway Administration

Research Objectives

- Study how accelerating admixtures affect the pore solution resistivity, bulk resistivity, degree of hydration, and porosity of an OPC system
- Verify whether electrical resistivity correlates with microstructural features when accelerating admixtures are included

Relevant to establish whether electrical tests can be extended to mixtures which incorporate accelerating admixtures

Materials and Experimental Methods

U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Center

Materials

OPC paste, w/cm 0.42, combined with different accelerating admixtures:

Admixture Type	ASTM Compliance	ID	Main Chemical Components	Chemical Components Concentrations Ranges (%)*	Dosage (ml/ 100 kg cement)	Dosage (oz/cwt)
Corrosion Inhibitor	ASTM C494 - Type C	Corr-In	Calcium Nitrite; Calcium Nitrate;	30 - 50; 1 - 5;	4235	65
Accelerator	ASTM C494 - Type C	N-CI-Acc1	Sodium Nitrate; Sodium Thiocyanate; (methylimino)diethanol;	10-20; 5-10; 1- 5;	1820	28
Accelerator + Water Reducer	ASTM C494 - Type C and E	N-CI-Acc2	Calcium nitrate Tetrahydrate; Sodium Thiocyanate;	50 - 70; 1 - 5;	1590	24
Accelerator	ASTM C494 - Type C and E	CI-Acc	Calcium Chloride;	20 - 30	2275	35

Curing

Paste specimens were cured in sealed conditions at 23 ± 0.5 °C, up to 28 days

Experimental Methods – Degree of Hydration

Degree of Hydration (DOH) was tested with 2 different methods:

▷ Isothermal Calorimetry (IC) - between 0 and 7 days:

• H(t) = Cumulative heat at time 't' from mixing (J/g_{cement})

$$DOH = \frac{H(t)}{H_{u}}$$

• H_u = Ultimate heat from cement phase composition (J/g_{cement})

- $w_b(t)$ = bound water from TGA at time 't' from mixing (g_{water} / g_{cement})
- $w_{b,u}$ = ultimate bound water from thermogravimetric analysis (g_{water} / g_{cement})

$$DOH = \frac{w_b(t)}{w_{b,u}}$$

Experimental Methods – Pore Solution Resistivity (PSR)

Experimental Methods – Porosity

- 5 mm disks cut from 2" x 4" paste cylinder
- Age of testing: 1, 7, and 28 days
- Vacuum saturation using limewater

Porosity (%) =
$$\frac{M_{SSD} - M_{OD}}{M_{SSD} - M_B} \cdot 100$$

Experimental Methods – Bulk Resistivity (BR) and Formation Factor (FF)

Age of testing: 1, 7, and 28 days

Resistivity was tested on 2" x 4" paste cylindrical specimens

 $Formation \ Factor = \frac{Bulk \ Resistivity}{Pore \ Solution \ Resistivity}$

FF was calculated by normalizing the BR by the measured PSR

Results

U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Center

Degree of Hydration

Age (Days)	Technique	Degree of Hydration (%)					
		OPC	OPC + Corr- In	OPC + N-Cl-Acc1	OPC + N-Cl-Acc2	OPC + Cl-Acc	
0.04	IC	0	0	0	0	0	
0.2	IC	3	5	3	3	2	
1	TGA / IC	54 / 45	49 / 42	55 / 47	63 / 46	55 / 45	
7	TGA / IC	72 / 71	70 / 69	70 / 69	68 / 70	63 / 68	
28	TGA	80	80	83	73	74	

Results - PSR

Impact of accelerating admixtures on the pore solution resistivity is reduced over time

- Control mixture exhibits higher BR when plotted vs time
- When plotted vs DOH, some admixtures seem to affect the resistivity evolution

Results - FF

→ OPC
 OPC+Corr-In
 OPC+N-CI-Acc1
 OPC+N-CI-Acc2
 → OPC+CI-Acc

► FF shows similar trends to resistivity

Porosity shows inverse development when compared to BR and FF

Porosity vs BR and FF

- Both BR and FF show inverse relationship with the porosity of the system
- FF shows greater scatter than BR at lower porosity

Summary

DOH

- At early ages, accelerating admixtures increase the cement DOH
- At later ages, the presence of admixtures can decrease the measured DOH (up to 9% compared to the OPC control system)

- Accelerating admixtures affected the pore solution resistivity:
- At early ages up to 35% measured reduction
- At 28 days under 20%
 measured reduction
 compared to control

BULK RESISTIVITY

Concretes with accelerating admixtures had lower BR measurements than the control at the same age

Not purely attributable to pore solution resistivity (based on FF results)

Summary

 BR, FF, and the porosity showed linear correlation to the measured DOH.

CHANGE IN PROPERTIES

 When accounting for DOH, the accelerating admixture can increase, decrease, or have negligible impacts on the BR or FF of the paste.

_

BR / FF vs POROSITY

Both BR and FF showed
good correlation with the
saturated porosity
(goodness-of-fit of 0.96 and
0.88, respectively).

Conclusions

Effect of accelerating admixtures inclusion on the pore solution resistivity seems to lessen over time

BR and FF are closely related to the vacuum porosity of the systems

Sealed BR and FF can successfully characterize microstructure / transport properties in HES concrete mixtures that incorporate accelerators

References

Luca Montanari, Michelle Helsel, Igor de la Varga, Robert Spragg, Maria Juenger (2022). Impact of accelerating admixtures on the electrical properties of ordinary portland cement pastes. Cement and Concrete Composites, Vol. 133, 104651.

3rd International

Data Science for Pavements Symposium 2024

March 11 - 14, 2024 Turner-Fairbank Highway Research Center McLean, Virginia, USA

Workshops & DOT Presentations

Cutting-Edge Research

HYBRID EVENT

U.S. Department of Transportation Federal Highway Administration

The Federal Highway Administration (FHWA), Missouri Center for Transportation Innovation and the University of New Hampshire invite you to an international symposium focused on advancing data science technology in the pavement field. For more information, visit our website.

Roundtable & Student Data Competition

Industry Networking

<u>pavementdatascience.com</u>

Questions