## Multiscale Optimization of nCB-Cement Composites: Effects of Chemical Surfactants on: Dispersion, Conductivity, Mechanical Performances

#### Nancy Soliman, T. Divoux, K. Ioannidou, A. Omran, FJU, R. Backov, FJU, R. Pellenq





ACI Fall Convention - Boston MA, Oct. 29 - Nov. 2 2023

## Motivation

#### A radical change is needed:

Cut CO<sub>2</sub> emission by 50% in the next 10 years (stay below temperature rise of 1.5 °C); reach net zero in 2050



USA has joined over 120 countries in committing to be net-zero emission by 2050

IPCC 2021. 1.5oC report

## **Does concrete meet social and environmental goals?**



Durability issues: repair of deteriorated infrastructures costs \$\$\$ billions



CO<sub>2</sub> emissions by business sector

#### 1 ton of cement leads to the emission of 900 kg CO<sub>2</sub> (CaCO<sub>3</sub> decomposition and Fuel)

Monteiro, P., Miller, S. & Horvath, A. Nature Mater. 16, 698–699 (2017) 40% of bridges in US require rehabilitation costing ~ \$28 billion annually





#### **Functionality issues:**

concrete has no negative entropy input through matter or energy with external stimuli



Negative entropy input



Smart materials are designed with properties that can be changed in a controlled fashion by external stimuli (stress, moisture, electric, chemical compounds Han et al. 2017

# How can concrete be sustainable to meet social and environmental goals?



## **Electron conducting carbon-based cement**

Capillary pores network of CSH: 95% connected...



Nano-Carbon Black (nCB)



Low cost & high electrical conductivity



Electrically conductive

Self-heating

Energy storage (capacitors)

Pellenq et al., MIT-CNRS, United States Patent, Dec 2020

## What is the effect of nCB dispersion on mechanical and electrical conductivity?



### <u>Mechanical and microstructural properties</u>: multiscale engineering chemo-mechanical material characterization



## **Trade-off between strength and conductivity**

#### **Electrical Conductivity:**

- Enhanced by moderate PNS and CMC; high concentration prevents the formation of conductive nCB networks.
- PCE's effect is neutral, indicating a lack of interaction with nCB particles.
- CMC+PCE shows a balanced conductivity, suggesting an optimal nCB particle dispersion.

#### Macro-scale Mechanical Strength:

- Improved with PNS due to uniform nCB distribution, contrary to the weakening effect of CMC.
- PCE maintains/improves strength, indicating effective cement hydration and nCB integration.



## Fracture analysis via scratch test – microscale: Progression of Fracture toughness and energy

- nCB dispersion using any dosage → increases fracture toughness
- Improvement on fracture toughness is originated from crack deflection effect, which results from nCB inclusion in cement matrix



## **Examining fracture mechanisms through SEM of scratch groove**

12.5% nCB volume fraction, 0.42 *w/c*, 0.35% PNS



The tortuosity (non-planar geometry) of a crack path is visible along with crack surface.

## **Ductility: M/H, Fracture Processing Zone (K<sub>c</sub>/H)<sup>2</sup>**



Plastic dissipation capacity is increased and hence FPZ becomes smaller

### **Evolution of friction coefficient and cohesion**

- Using nCB with surfactants →
  slightly boosts friction coefficient
  (*due to filling capillary pores with nCB*) → enhances fracture
  toughness
- PNS significantly increases cohesion → greater macro-scale strength, compared to other surfactants



## Effect of dispersion of nCB on Nanomechanical properties using Nanoindentation < $1\mu m$

| Mixture<br>with: | Indentation H (GPa) |            |            |            | Indentation M (GPa) |            |            |            | Indentation creep (GPa) |            |              |               | Volume friction |            |            |            |
|------------------|---------------------|------------|------------|------------|---------------------|------------|------------|------------|-------------------------|------------|--------------|---------------|-----------------|------------|------------|------------|
|                  | Phase<br>1          | Phase<br>2 | Phase<br>3 | Phase<br>4 | Phase<br>1          | Phase<br>2 | Phase<br>3 | Phase<br>4 | Phase<br>1              | Phase<br>2 | Phase<br>3   | Phase<br>4    | Phase<br>1      | Phase<br>2 | Phase<br>3 | Phase<br>4 |
| Blane Cement     | 1.1±0.3             | 1.4±0.3    | 2.0±0.4    |            | 32±4.3              | 37±6.8     | 44±6       |            | 193±53                  | 387±85     | 835±333      |               | 61              | 24         | 12         |            |
| No surfactant    | 0.7±0.3             | 1.4±0.4    | 2.3±0.5    | 5.8±2.8    | 19±4.5              | 28±5.4     | 44±7       | 77±19      | 148±48                  | 319±65     | 698±205      | 2567±13<br>26 | 37              | 23         | 34         | 5.8        |
| 0.3%PNS          | 1.0±0.2             | 1.5±0.23   | 2.3±0.5    |            | 25±4.4              | 37±4.4     | 52±11      |            | 132±38                  | 235±63     | 499±210      |               | 54.5            | 30         | 14         |            |
| 1%PNS            | 1.5±0.4             | 2.0±0.69   | 3.1±0.9    |            | 29±5.2              | 39±4.4     | 51±9       |            | 353±96                  | 537±184    | 754±283      |               | 59              | 31         | 10         |            |
| 1%PCE            | 1.12±0.4            | 2.0±0.7    | 4.7±1.8    |            | 30±6.4              | 45±9.6     | 89±30      |            | 300±78                  | 592±212    | 1565±77<br>4 |               | 64              | 26         | 11         |            |
| 0.25%CMC         | 0.9±0.4             | 1.3±0.41   | 2.0±0.7    |            | 23±5.3              | 34±5.2     | 50±10      |            | 141±29                  | 285±71     | 520±271      |               | 59              | 30         | 12         |            |
| 1%PCE-CMC        | 1.2±0.4             | 1.9±0.7    | 4.7±1.8    |            | 29±6.4              | 45±9.6     | 89±30      |            | 300±78                  | 592±212    | 1565±77<br>4 |               | 63              | 30         | 8          |            |

- No dispersion of nCB decreases M and H of the C-S-H → strength reduction
- Over dispersion of nCB with PNS enhances M and H of the C-S-H → Cohesion & macro-mechanical improvement

## Microstructural analysis of nCB-Cement Composite using SEM and EDS



Without dispersing agent: nCB forms large agglomerations, hindering load transfer and affecting mechanical properties. PCE, CMC inclusions: Fewer agglomerations, more uniform nCB distribution. High PNS concentration: Best uniformity in nCB distribution, enhancing mechanical strength.`

### Conclusions

- Conductivity: Enhanced nCB dispersion via PNS and CMC boosts conductivity; excess dispersion reduces it. PCE has minimal effect.
- Strength: Direct correlation with nCB dispersion. PNS surfactant notably improves strength. No dispersion diminishes strength.
- ✓ Fracture Properties: nCB dispersion elevates toughness and ductility due to 'crack deflection' and bridging forces from PCE/CMC.
- ✓ Friction & Cohesion: PNS and CMC increase both by enhancing nCB dispersion.
- ✓ **Micromechanical:** PNS dispersion uplifts C-S-H gel properties by 12-25%.
- ✓ Morphology: SEM/EDS analysis highlights surfactants' role. PNS optimizes mechanical strength but lowers conductivity.



nCB's <u>potential in concrete is transformative</u>. By optimizing balance and delving into nCB <u>surface</u> <u>functionality</u>, we can pioneer <u>a multifunctional</u> <u>concrete that excels in strength and conductivity</u>.

## Thank you!



## Nancy Soliman, PhD

**Assistant Professor** 

College of Engineering-Civil Engineering

6300 Ocean Dr., Corpus Christi, TX USA

*o* 361.825.3236 | *c* 857.248.2440 nancy.soliman@tamucc.edu

COLLEGE OF SCIENCE AND ENGINEERING

## **Approach: Micro-scratching protocol**



## **Approach: Indentation protocol**



Oliver, W. C., & Pharr, G. M. Journal of materials research, (1), 3-20(2004). Vandamme, M., & Ulm, F. J. Proceedings of the National Academy of Sciences, (26), 10552-10557(2009).