

Thermal Strains in Concrete Pavements – Measurements and Field Implementation

Avinaya Tripathi

PhD Student

Narayanan Neithalath

Professor

School of Sustainable Engineering and the Built Environment

Arizona State University, Tempe, AZ

Narayanan.Neithalath@asu.edu; http://neithalath.engineering.asu.edu

Aashay Arora, Matthew Aguayo

EnKoat Inc.

http://enkoat.com

Introduction

Arizona State University

Types of Cracking

Thermal cracking

- Hydration of cement is an exothermic process it generates heat
- As the concrete cools it contracts and in extreme conditions may contract in three days as much due to cooling as it could in a year due to drying conditions
- A temperature differential of 35° F within 1 ft is usually considered enough to cause cracking
- However, within 24-hours of placement, concrete temperatures can reach anywhere from 20° to 50° F hotter than ambient temperatures

Motivation

Thermal Related Damage

Early age cracking in infrastructure

One Active Mitigation Strategy - PCMs

• Phase change materials (PCM) are combined sensible-and-latent heat materials that can be used to store and dissipate energy in the form of heat

Background

Microencapsulated PCM Type

Chemical Composition	PCM-M	PCM-E
Paraffin wax (%)	69.50	90.22
Polymeric capsule (%)	20.70	7.67
Residue (%)	9.80	2.10
Core-to-shell ratio (mass-based)	3.4	11.8

Characterization of Phase Change Materials

Arizona State

University

- PCMs absorb and release heat, which scales as a function of their dosage and enthalpy of phase change.
- During the phase transition, the PCM stores latent heat energy, helping to maintain a constant system temperature

Matrix Dispersion

Heat of hydration and temperature development

Arizona State

University

- Lower heat development both isothermal and semi-adiabatic temperature rise
- Delaying time to peak temperature

Arizona State University

Thermal Performance – heat flow

- The enthalpy of phase change determined as the area under the heat flow curve during the time the phase transition is active
- Onset temperature (T_{onset}) corresponding to melting is 21.9°C and the completion temperature (T_{completion}) is 29°C, with the endothermic peak
 noted at 26.2°C.

Thermal Performance – thermal/shrinkage strains

Arizona State

University

- No adverse influence on free strains; Delay in the age of cracking
- All the cementitious mixtures fail at tensile stresses substantially (around 50%) lower than the tensile strength of the material around 7 days

Project Location

Sensor Locations

Bluetooth Monitoring System

RFID Monitoring System

Sensor Locations

PCM Dispersion

Final PCCP and TCSCP Sections

RFID Temperature and Strain Development

Presented at the ACI Fall 2023 Convention, November 1, 2023

Presented at the ACI Fall 2023 Convention, November 1, 2023

Numerical Modeling

$$T(x,-L)=T_g$$

$$k_{comp} \frac{\partial T(L,t)}{\partial x} = k_{soil} \frac{\partial T_{soil}(L,t)}{\partial x}$$

50 layers each were considered for the concrete pavement as well as the base/sub-base, which translated into layer thicknesses of 6 mm and 30 mm respectively for these components

Temperature profile

 Maximum section temperatures when PCM replaces cement or sand by a certain volume

Arizona State University

Presented at the ACI Fall 2023 Convention, November 1, 2023

8

6

$$\Delta T_{curl} = (T_{top,current} - T_{bottom,current}) - (T_{top,final-set} - T_{bottom,final-set})$$

$$\sigma_{curl} = \frac{\alpha_{comp} \cdot \Delta T_{curl} \cdot E}{2(1-\nu^2)} (C_{max} + \nu C_{min})$$

Conclusions

- Laboratory and field studies on the use of phase change materials in concrete
- Thermal stress/strain mitigation and crack control
- RFID strain sensing for quality control and prediction
- Experiments, models, and field studies to establish the beneficial attributes of a novel technology

0

Acknowledgements

