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Unlocking Concrete’s Green Potential: 

Integrating Supplementary 

Cementitious Materials with 

Biomolecule-regulated Carbonation



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Problem Statement

Cement industry is one of the contributors to global CO2 emissions

Image from Global Cement and Concrete Association (GCCA) roadmap to net-zero

Deep decarbonization:

→  Compatibility of methods

→  Quick implementation

→  Improved performance
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Supplementary Cementitious Materials (SCMs)

→  Currently most adopted solution towards low-carbon concrete 

→  SCMs are siliceous-aluminous materials commonly 

     used as a partial replacement for cement

Cement hydration:

Pozzolanic reaction:

→  Latent property causes low early-age strength 

     and delayed setting time

C3S + H2O → C-S-H + CH

CH + SiO2 + H2O → C-S-H
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Limestone Calcined Clay Cement – LC3

→  Due to the widespread availability of clay, LC³ 

     has become a popular ternary cement

→  Synergy between alumina from calcined clay and 

     carbonates from limestone

→  Stabilization of ettringite (AFt) 

→  Formation of hemi- and monocarbonate (Hc and Mc)

Alumina + gypsum + water → ettringite (AFt)

Alumina + limestone + water → hemi- and monocarbonate



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Utilizing CO2 in Concretes

Carbonation Curing

Replacing water/steam with purified

CO2 for curing after concrete mixing

Improved strength at early-age

Limited applicability

→  Small members like concrete blocks

→  Precast (chamber required)
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Utilizing CO2 in Concretes

Mixing Carbonation 

• Injecting purified CO2 during concrete mixing

Precast and ready mix

Strength improvement

(5 – 8% cement saved)

Some CO2 released back to air

0.15 – 0.2% wt. of 

cement in CO2 storage
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New Pathway: The BioCarb Method

Step I: Mixing and bubbling CO2 

CO2

Calcium-rich

material

Mixing 

Water
Biomolecule

Carbonated 

Slurry

Step II: Mixing with other ingredients

Remaining ingredients: 

OPC, aggregates, etc.

Concrete 

Product
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BioCarb Method: How does it work?
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NanoCaCO3 is produced in-situ 

• Filler effect

• Seeding effect

Multi-functional biomolecule

• Regulate the crystal nucleation, 

orientation, size, and phase 

• Disperse the produced CaCO3 

nanoparticles

No carbonation

No TA

With TA
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• CO2 Uptake after 60 min = 7.45% (30x better than the existing technology)

• Carbonation duration depends on the added biomolecule

• 30 – 60 min is sufficient for most applications

CO2 Uptake
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Strength Improvement

Water : Cement : Sand = 1:2:5

Production: half of cement mixed 

with all mixing water and 

carbonated with a biomolecule as a 

small dose additive

Over 25% strength improvement

Over 20% reduction on carbon 

intensity
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Experimental Plan

xT yPC zmC

→  Portland cement was used as the calcium source in the slurry

→  Three SCMs were considered: class F fly ash, slag, and metakaolin

→  Two main factors were analyzed

1. Tannic Acid concentration

2. Carbonation time

Tannic

Concentration

Carbonation 

time in minutesPortland Cement 

Concentration
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Compatibility with Fly Ash

→  Replacement of 20% of 

cement

→  25% of cement in the slurry

→  Class F fly ash

→  Early age improvement

→  No compromise to late age 

strength
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Compatibility with Slag

→  Replacement of 30% of 

cement

→  25% of cement in the slurry

→  Improved performance at all 

ages
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Compatibility with Metakaolin

→  Replacement of 20% of 

cement

→  10% of cement in the slurry

→  30 minutes of injection
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Hydration Kinetics

→  Synergy between alumina and tannic acid

O

O

O

O

Al3+

Metal-polyphenol coordination

Promotion of C3A reactivity
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Gypsum Adjustment

→  Recovery on 3 days strength

→  1.5% gypsum addition

→  28 days strength improved 

an extra 10% 
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Conclusions

1. BioCarb method shows compatibility with all traditional SCMs

2. Compound environmental impact:

→  Reutilization of waste wash-water (5 – 25% of cement recycled in the water)

→  Improved CO2 storage (almost 8% uptake)

→  Improved mechanical performance (25% increase in strength)

→  Partial replacement of cement (20 – 30% of SCMs usage)



Thank you!

National Science Foundation through #1761672, 

#2236331, #2331381, #2328044, and #2418355
Department of Energy through DE-FE0032263
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