Unlocking Concrete's Green Potential: Integrating Supplementary Cementitious Materials with Biomolecule-regulated Carbonation

> Presenter: Monica Amaral Co-author: Jialai Wang

Department of Civil, Construction, and Environmental Engineering The University of Alabama, Tuscaloosa

> ACI Fall Convention – Philadelphia, PA November 2024

College of
Engineering

Problem Statement

Cement industry is one of the contributors to global CO₂ emissions

Image from Global Cement and Concrete Association (GCCA) roadmap to net-zero

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Deep decarbonization:

- \rightarrow Compatibility of methods
- \rightarrow Quick implementation
- \rightarrow Improved performance

Supplementary Cementitious Materials (SCMs)

- → Currently most adopted solution towards low-carbon concrete
- → SCMs are siliceous-aluminous materials commonly used as a partial replacement for cement

Cement hydration:

Pozzolanic reaction:

$$C_3S + H_2O \rightarrow C\text{-}S\text{-}H + \textbf{CH}$$

$$\textbf{CH} + SiO_2 + H_2O \rightarrow C\text{-}S\text{-}H$$

→ Latent property causes low early-age strength and delayed setting time

Limestone Calcined Clay Cement – LC³

- → Due to the widespread availability of clay, LC³ has become a popular ternary cement
- → Synergy between alumina from calcined clay and carbonates from limestone
- \rightarrow Stabilization of ettringite (AFt)

Alumina + gypsum + water \rightarrow ettringite (AFt)

 \rightarrow Formation of hemi- and monocarbonate (Hc and Mc)

Alumina + limestone + water \rightarrow hemi- and monocarbonate

Utilizing CO₂ in Concretes

Carbonation Curing

Replacing water/steam with purified CO₂ for curing **after** concrete mixing

Improved strength at early-age

Limited applicability

- \rightarrow Small members like concrete blocks
- \rightarrow Precast (chamber required)

Utilizing CO₂ in Concretes

Mixing Carbonation

Injecting purified CO₂ during concrete mixing

Precast and ready mix

Some CO_2 released back to air

Strength improvement (5 – 8% cement saved)

0.15 - 0.2% wt. of cement in CO₂ storage

New Pathway: The BioCarb Method

BioCarb Method: How does it work?

NanoCaCO₃ is produced in-situ

- Filler effect
- Seeding effect

Multi-functional biomolecule

- Regulate the crystal nucleation, orientation, size, and phase
- Disperse the produced CaCO₃ nanoparticles

NCRFTF

CO₂ Uptake

• CO_2 Uptake after 60 min = 7.45% (**30x better** than the existing technology)

CRFTF

- Carbonation duration depends on the added biomolecule
 - 30 60 min is sufficient for most applications

Strength Improvement

Water : Cement : Sand = 1:2:5

Production: half of cement mixed with all mixing water and carbonated with a biomolecule as a small dose additive

Over 25% strength improvement

Over 20% reduction on carbon intensity

Experimental Plan

- \rightarrow Portland cement was used as the calcium source in the slurry
- \rightarrow Three SCMs were considered: class F fly ash, slag, and metakaolin
- \rightarrow Two main factors were analyzed
 - 1. Tannic Acid concentration
 - 2. Carbonation time

Compatibility with Fly Ash

- → Replacement of 20% of cement
- \rightarrow 25% of cement in the slurry
- \rightarrow Class F fly ash
- \rightarrow Early age improvement
- → No compromise to late age strength

Compatibility with Slag

Compatibility with Metakaolin

Hydration Kinetics

\rightarrow Synergy between alumina and tannic acid

NCRETE

ONVFN

Gypsum Adjustment

- \rightarrow Recovery on 3 days strength
- \rightarrow 1.5% gypsum addition
- \rightarrow 28 days strength improved an extra 10%

Conclusions

- 1. BioCarb method shows compatibility with all traditional SCMs
- 2. Compound environmental impact:
 - \rightarrow Reutilization of waste wash-water (5 25% of cement recycled in the water)
 - \rightarrow Improved CO₂ storage (almost 8% uptake)
 - \rightarrow Improved mechanical performance (25% increase in strength)
 - \rightarrow Partial replacement of cement (20 30% of SCMs usage)

Thank you!

NSF's Convergence Accelerator

Fossil Energy and Carbon Management

National Science Foundation through #1761672, #2236331, #2331381, #2328044, and #2418355

Department of Energy through DE-FE0032263

American Concrete Institute