

"Embedded pore solution resistivity sensor for concrete materials"

ACI Concrete Convention – Philadelphia, PA, USA Tuesday November 5th, 2024

Developed Sensor *

Alarab, Amir Ph.D. candidate * Kamasani, C. R. Postdoc.Kargah-Ostadi, Nima, VP at Callentis Consulting GroupRajabipour, F. , Professor & Department Head, CE at Penn State UVasylevskyi, K. * Drach, B. * Drach, A.

Why measure concrete Pore Solution Resistivity (PSR) ?

AASHTO R101

to ensure adequate durability (chloride penetration and corrosion)

we must measure the **formation factor** of concrete

Mixture resistivity

AASHTO T 358 & T 402

Pore Solution Resistivity

Helsel et al. – TRR (2023)

Weiss - TRB (2017)

How to estimate Pore Solution Resistivity (PSR)?

Formation Factor

$$FF_{sensor} = \frac{R_{sensor} * GF}{\rho_{soaking Solution}}$$

$$\rho_{SPS} = R_{sensor} * \left(\frac{GF_{sensor}}{FF_{sensor}}\right) = R_{sensor} * TF_{sensor}$$
Translation
Factor

$$FF_{sensor} = \frac{R_{sensor} * dT}{\rho_{soaking Solution}}$$

$$\rho_{SPS} = R_{sensor} * \left(\frac{GF_{sensor}}{FF_{sensor}}\right) = R_{sensor} * TF_{sensor}$$
Translat

Rajabipour – Doctoral Dissertation (2006)

Making the Sensor

High porosity (55.5%)

High fraction Pores (FP) with d < 20 nm (96.3%) High diffusibility & capable of reaching equilibrium quickly

Reduce/Prevent drying

Kelvin equation: Radius = $\frac{-2\gamma V_m Cos\theta}{\mathcal{R}_g T \cdot ln(R H/a_l)}$

At RH =90%, PS evaporates from pores with diameter <20 nm

What challenges did we overcome? (to ensure reliable readings)

- Stability of sensor matrix microstructure
- Minimizing current leakage
- Durability of sensor electronics and packaging
- Calibration of the sensor (TF, testing frequency, saturation solution)
 - Temperature fluctuation
 - Shipping of the sensor, ensure saturation

How to use the sensor to measure PSR in cylindrical concrete samples?

What are the criteria for evaluating its performance in concrete?

Sensors have very **high repeatability** in measuring concrete PSR.

	Repeatability (PSR) index (%)		
	14 days	28 days	56 days
Batch 1	99.6%	99.7%	98.4%
Batch 2	94%	93%	94%
Batch 3	96%	96%	96%
All Batches	93%	92%	92%

Concrete PSR varies based on the curing method.

Pore Solution Extraction Concrete - w/c = 0.45

Pore Solution Resistivity (PSR) - From Extraction

PSR sensor in concrete samples cured in simulated solution

3 14 Days

28 Days

56 Days

PSR Sensors Accuracy, PSR Sensors Accuracy, Reference: PSE Concrete (SPS) Reference: PSE Concrete (Sealed) 100% 100% 95.2% 92.1% 95% 95% 92.3% 91.1% 90% 90% 85.7% 85.3% 85% 85% 81.2% 80.4% 80% 80% 75% 75% Accuracy [1-AAE] (%) Accuracy [1-AAE] (%) 7 Davs

🔅 7 Days

🔅 14 Days

28 Days

Accuracy (%) = 100 – Average Absolute Error (%)

56 Days

Sensors PSR reported at 28 days

CONCRETE CONVENTION

Summary & Conclusion

PSR sensors demonstrate high repeatability, ranging from 93% to 99%.

The composition of the pore solution around the PSR sensor differs from that extracted from an entire concrete.

Highest recorded accuracy:

- with concrete (sealed) is 95% at 28 days
- with Concrete (SPS) is 92% at 56 days

Testing on different mix design and field are ongoing.

