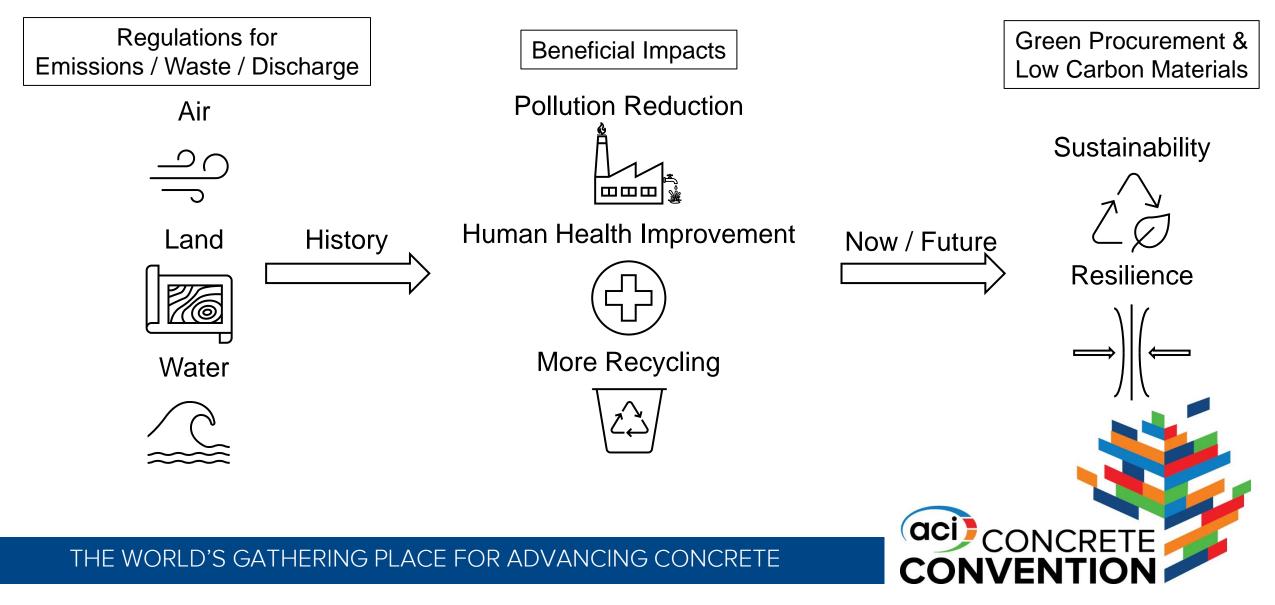
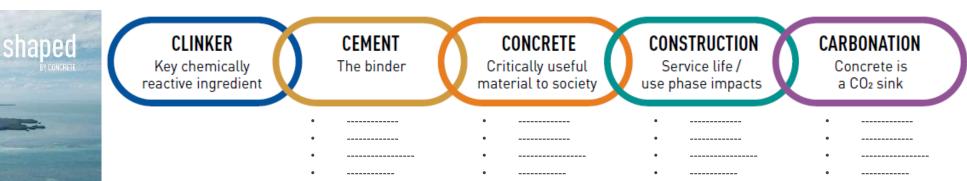

The Concrete Industry's Perspective on Public Procurement of Low Carbon Construction Materials

Brian Killingsworth, MSCE, P.E. Executive Vice President National Ready Mixed Concrete Association (NRMCA)

ACI Session: Impact of Buy Clean and Low-Carbon Policies on the Sustainability of Concrete


Agenda: Concrete Industry's Perspective on Green Public Procurement & Low Carbon Concrete

Industry Goals



Long History of Regulating the Cement and Concrete Industry

Roadmap to Carbon Neutrality: Cement & Concrete

Source: PCA

The cement and concrete industries are committed to achieving carbon neutrality across the value chain by 2050.

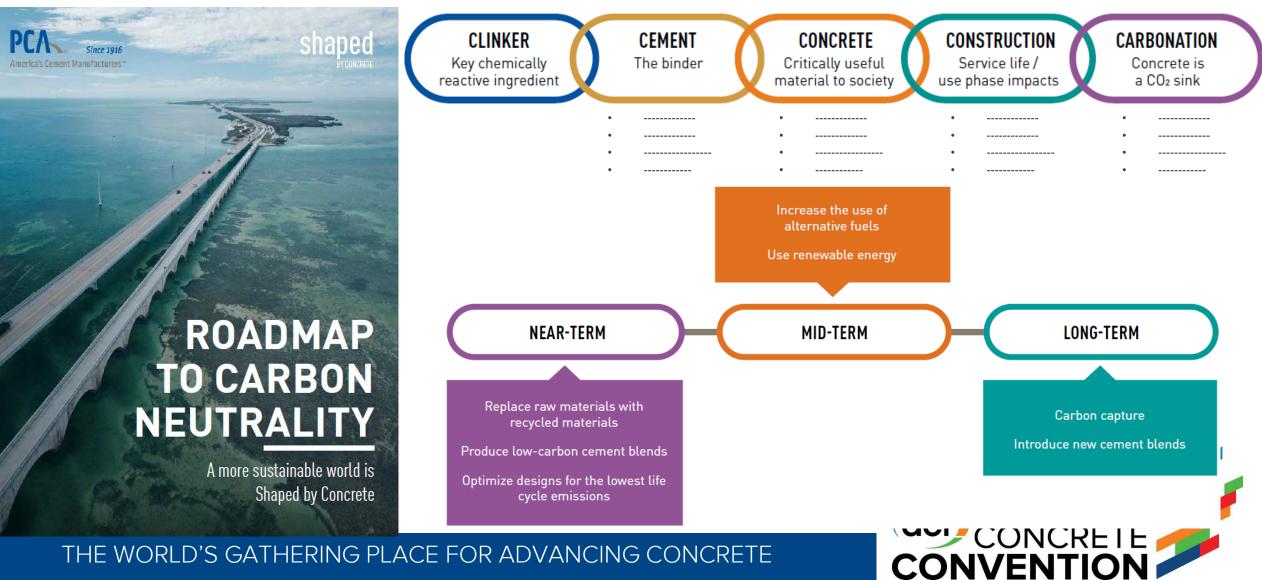
Achieving carbon neutrality will require combining actions across the supply chain.

The roadmap highlights these strategies and actions.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

ROADMAP

A more sustainable world is


Shaped by Concrete

TO CARBON

NEUTRALITY

Roadmap to Carbon Neutrality: Cement & Concrete

Source: PCA

Reducing Concrete's Embodied Carbon Emissions (In-Use to Near-Term)

Communicate Carbon Reduction Goals

Ensure Good Quality Control and Assurance

Optimize Concrete Designs & Mixtures

Specify Innovative Cements

O Don't Limit Ingredients (e.g., PEM)

Set Targets for Carbon Footprint

Sequester Carbon Dioxide in Concrete

Encourage Innovation

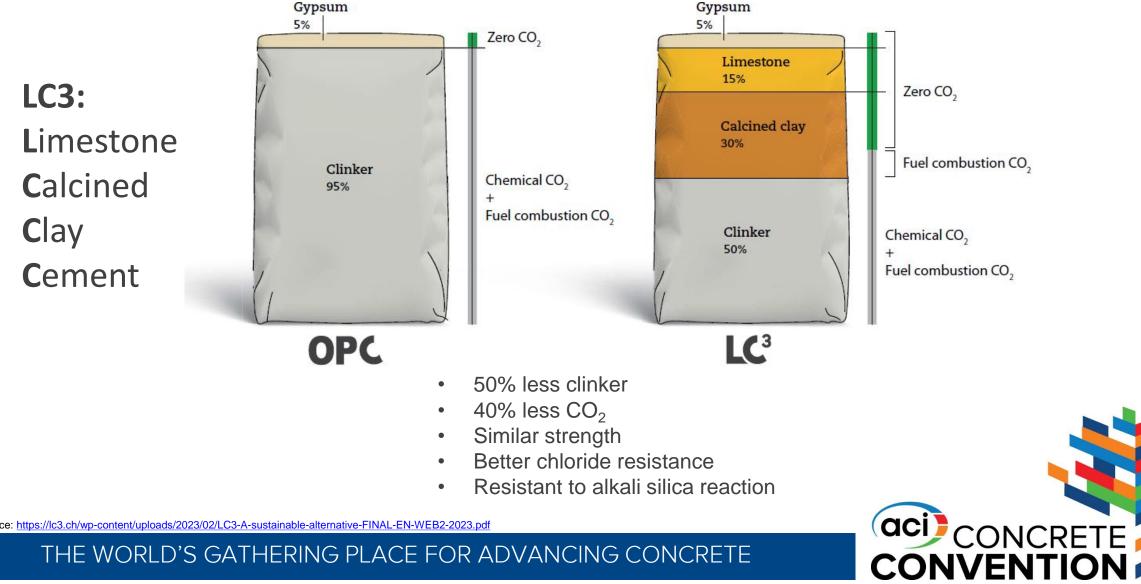
Source: NRMCA Top Ten Ways to Reduce Concrete's Carbon Footprint

Innovations

Cement: Going Beyond ASTM C150

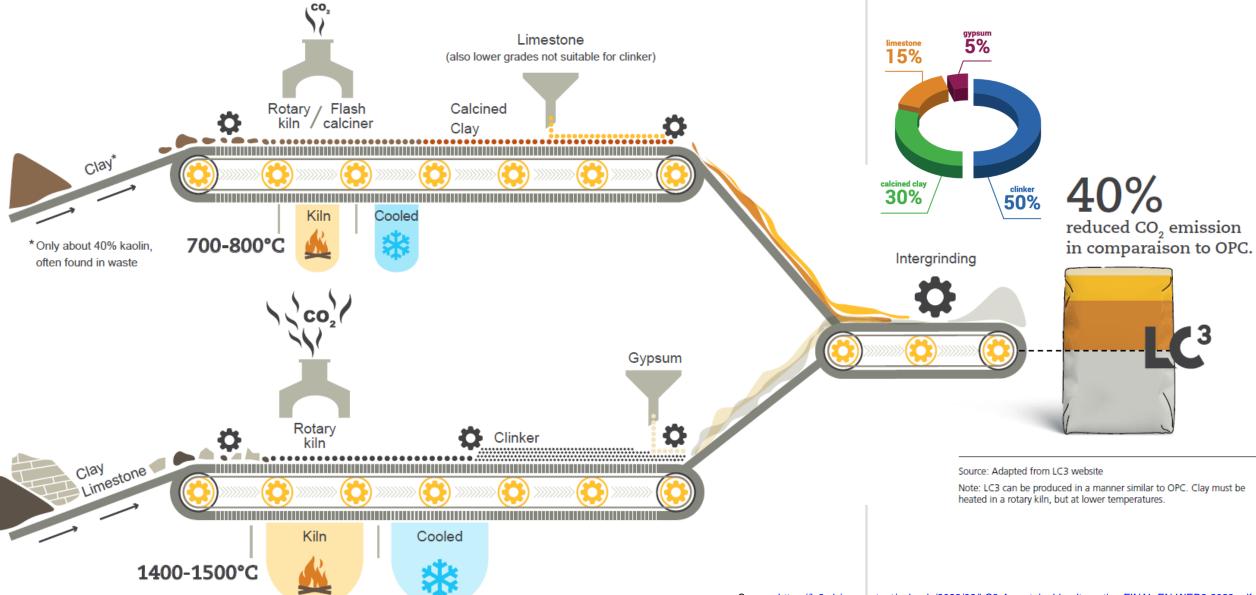
ASTM C595 Standard Specification for Blended Hydraulic Cements

ASTM C1157 Standard Performance Specification for Hydraulic Cement

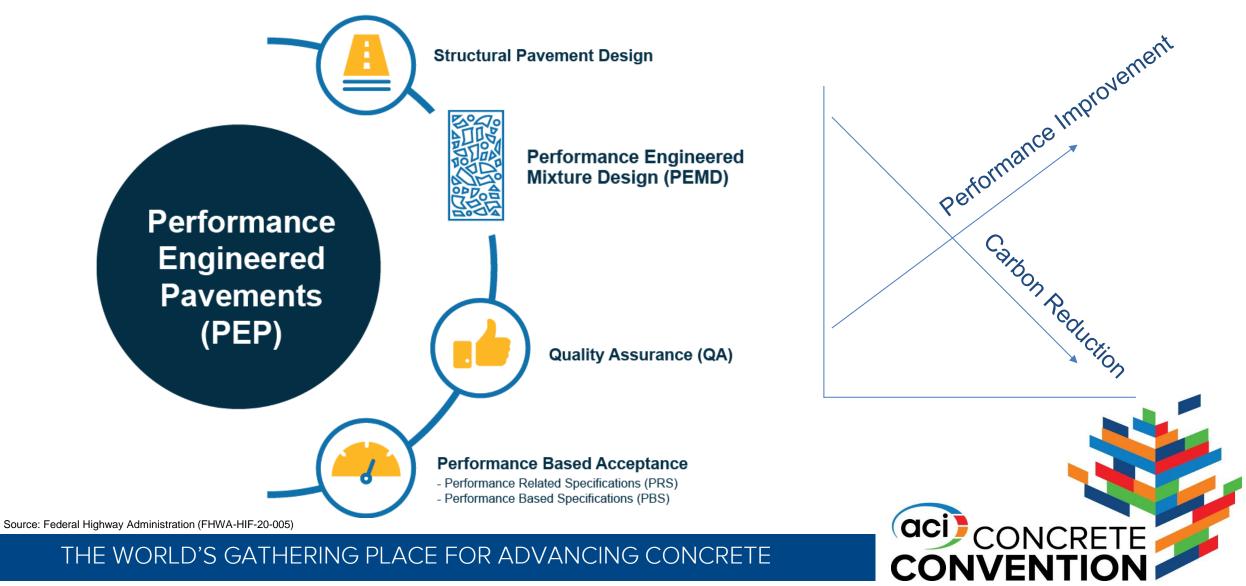

ASTM C1157

ASTM C595						
Туре	Description	Notes				
Type IL (X)	Portland-Limestone Cement	Where X can be between 5 and 15% limestone				
Type IS (X)	Portland-Slag Cement	Where X can be up to 70% slag cement				
Туре IP (Х)	Portland-Pozzolan Cement	Where X can be up to 40% pozzolan (fly ash is the most common)				
Type IT (AX)(BX)	Ternary Blended Cement	Where X can be up to 70% of pozzolan + limestone + slag, with pozzolan being no more than 40% and limestone no more than 15%				

Туре	Description	Notes					
Type GU (X)	General Use	X is optional but may be designated as \underline{R} for low reactivity with alkali-silica-					
Type HE (X)	High Early Strength	reactive aggregates or <u>A</u> for air- entraining cement. Performance tests may include:					
Type MS (X)	Moderate Sulfate Resistance	 Chemical analysis Fineness Expansion 					
Type HS (X)	Moderate Sulfate Resistance	 Initial set time Air content Compressive strength 					
Туре МН (Х)	Moderate Heat of Hydration	 Heat of hydration Sulfate resistance ASR reactivity 					
Type LH (X)	Low Heat of Hydration	Early stiffening					



Alternative Cements: LC3



Source: https://lc3.ch/wp-content/uploads/2023/02/LC3-A-sustainable-alternative-FINAL-EN-WEB2-2023.pdf

Alternative Cements: LC3

Performance Engineered Infrastructure

Material Properties Affecting Pavement Performance & Sustainability

• Enhance strength

• Increase tensile capacity

• Lower shrinkage

Better Performance And Improved Sustainability

• Reduce curl and warping

Transparency & Reporting

Industry Wide Environmental Product Declaration

- Ready Mixed Concrete Industry Wide EPD (v3.2) Jan 2022 Jun 2025
- Based on NRMCA Member Data (rep. of 100+ Companies & ~2,000 Plants)
- Concrete GWP Values from IW EPD (calculated at ↑strength & ↓SCM ranges):

NRMCA MEMBER INDUSTRY-AVERAGE EPD FOR READY MIXED CONCRETE

Environmental

Product Declaration (((

https://www.nrmca.org/wp-

content/uploads/2022/03/NRMCA EPDV3-

2 20220301.pdf

Industry Average EPD (Published January 3rd, 2022) 28-day f'c, psi Minimum Maximum 0% FA/SL 50% SL 50% FA/SL 20% FA 30% FA 40% FA 30% SL 40% SL Conventional Concrete GWP (per yd³) 0 - 2,500 136.6 213.7 213.7 184.7 169.1 152.6 168.0 152.8 137.5 136.6 2,501 - 3,000 238.1 238.1 205.2 187.4 168.8 186.1 151.7 150.7 150.7 168.9 3,001 - 4,000 182.5 182.5 293.3 293.3 251.7 229.1 205.5 227.5 205.6 183.7 4,001 - 5,000 220.3 358.5 358.5 306.6 278.6 249.0 276.5 249.2 221.8 220.3 5,001 - 6,000 231.5 233.1 377.4 377.4 322.6 293.0 261.7 290.8 262.0 231.5 6,001 - 8,000 266.9 438.9 438.9 374.4 339.5 302.6 336.9 302.9 268.9 266.9 Lightweight Aggregate Concrete GWP (per yd³) 0 - 3,000 303.0 426.4 426.4 305.7 303.0 367.2 335.2 360.0 340.8 321.6 3.001 - 4.000 343.6 491.2 491.2 424.0 385.0 414.7 348.2 390.3 343.6 362.5 4,001 - 5,000 373.6 547.6 547.6 468.5 422.4 455.3 380.1 427.5 373.6 394.4

Supplementary Cementitious Material (SCM) Ranges:

0-19% Fly Ash and/or Slag, 20-29% Fly Ash, 30-39% Fly Ash, 40-49% Fly Ash, 30-49% Slag, 40-39% Slag, ≥ 50% Slag, ≥ 20% Fly Ash and ≥ 30% Slag

NRMCA members decreased their carbon footprint by 21% in 7 years

Regional LCA Benchmark Report

	28-Day Compressive Strength, psi								
Region	2,500	3,000	4,000	5 <i>,</i> 000	6,000	8,000	3,000LW	4,000LW	5,000LW
	Global Warming Potential (per yd ³)								
National	183.5	200.6	235.6	279.0	294.6	341.3	376.4	412.9	449.8
Eastern	183.3	201.5	240.2	289.0	305.3	360.5	395.4	437.9	480.1
Great Lakes Midwest	177.6	194.8	231.4	277.6	293.1	345.3	381.6	421.6	461.3
North Central	184.2	201.9	238.8	284.7	301.5	351.8	372.1	410.7	451.7
Pacific Northwest	180.0	199.8	242.0	295.2	311.9	372.7	396.2	439.7	483.4
Pacific Southwest	196.5	213.5	247.3	288.9	306.4	349.0	382.2	417.5	453.9
Rocky Mountains	177.5	194.6	229.8	273.4	289.6	336.7	369.8	406.5	443.5
South Central	172.4	187.7	218.6	257.2	272.2	312.8	357.7	390.2	424.5
South Eastern	188.9	204.6	236.5	275.5	292.1	332.2	365.6	398.7	429.4

Table B1-NRMCA U.S. National Benchmark Mix Designs (per cubic yard)										
								3000	4000	5000
Compressive Strength	psi	2500	3000	4000	5000	6000	8000	LW	LW	LW
Portland Cement	lbs	354	394	475	576	610	719	394	475	556
Fly Ash	lbs	62	69	83	101	107	126	69	83	97
Slag Cement	lbs	17	19	23	28	30	35	19	23	27
Mixing Water	lbs	305	305	305	315	341	341	308	308	308
Crushed Coarse Aggregate	lbs	1,126	1,115	1,083	1,029	1,061	1,018	0	0	0
Natural Coarse Aggregate	lbs	553	547	531	505	521	499	0	0	0
Crushed Fine Aggregate	lbs	169	167	162	154	159	152	161	149	136
Natural Fine Aggregate	lbs	1,282	1,270	1,233	1,171	1,208	1,159	1,225	1,130	1,035
Man.Lightweight Aggregate	lbs	0	0	0	0	0	0	980	990	1,000
Air %	%	6%	6%	6%	6%	6%	0	6%	6%	2%
Air Entraining Admixture	oz	1	1	1	1	1	1	1	1	0
Plasticizer & Superplasticizer	oz	3	3	3	7	3	3	3	7	7
Set Accelerator	oz	25	20	15	10	25	20	15	10	10
Total Weight	lbs	3,867	3 <mark>,</mark> 886	3,895	3,878	4,037	4,049	2,178	2,168	2,159

- Published by NRMCA July 2022 (v3.2)
- Region Specific Mixtures For:
 - 6 Conventional Concrete Mixtures &
 - 3 Lightweight Concrete Mixtures

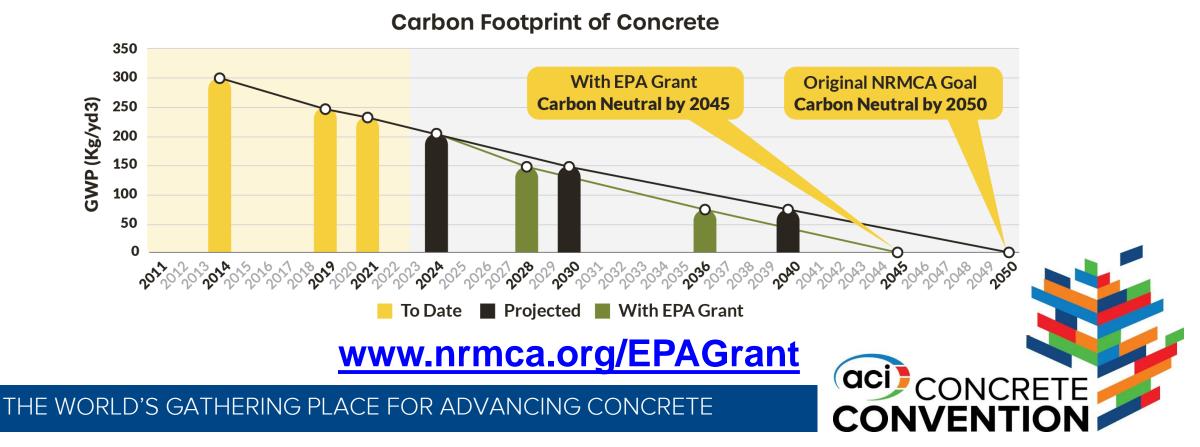
FHWA Low Carbon Transportation Materials Grants (IRA SEC. 60506)

- FHWA will refer to industry data to demonstrate compliance with the EPA's Interim Determination (asphalt, concrete, glass, steel) for compliance with LCTM grant funding.
 - September 30, 2023: Provide FHWA with intent to publish industry averages. ✓
 - November 30, 2023: Publish methodology and assumptions. ✓
 - September 1, 2024: Provide methodology for subject matter expert review. ✓
 - November 2024: Provide industry averages on a public facing website. ✓
 - <u>https://www.nrmca.org/association-resources/sustainability/environmental-product-declarations</u>

Concrete Benchmarks Published to Assess Compliance with EPA Interim Determination

Table 6: Benchmark for 3,000 psi mixture in Pennsylvania

[all values in kg CO2e / m3]	A1 (Eastern)	A2 (Eastern)	A3 (Eastern)	A1-A3 Total (Proposed Method)	Current A1- A3 GSA Thresholds
20%	207	12	7	226	257
40%	226	17	9	252	291
50%	229	20	10	259	х
Average	230	22	11	263	318


Future (The Next 5-Years...)

Accelerating Concrete's Drive To Carbon Neutrality

NRMCA Selected for \$9.63 Million EPA Grant

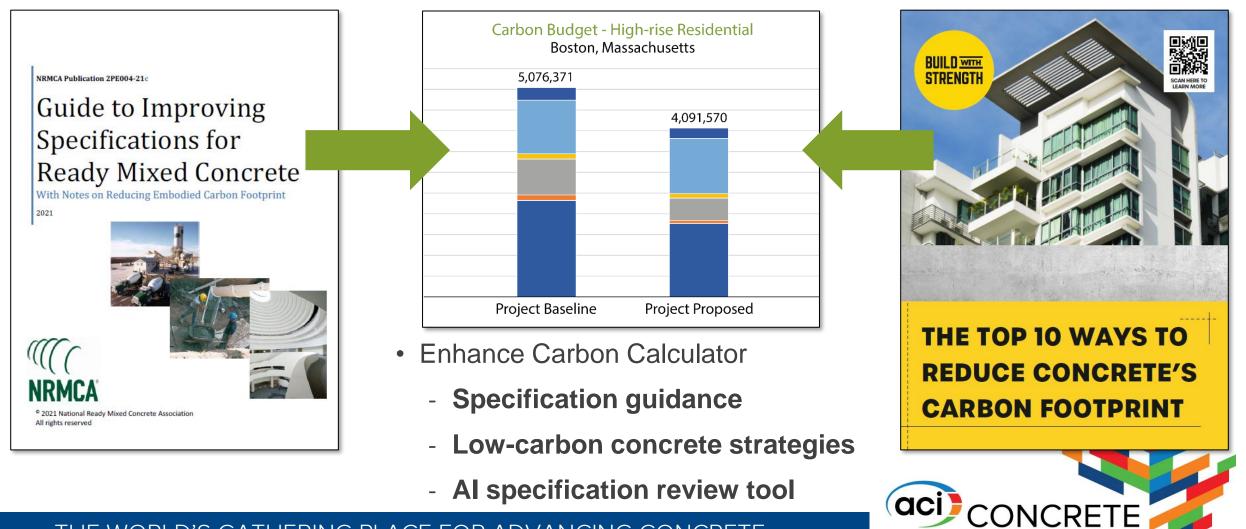
GOAL: Reduce the carbon footprint of concrete by 50% by 2028 and achieve carbon neutrality by 2045.

Objective 1: Increase Number of Ready Mixed Concrete EPDs

Goal: Increase plants with EPDs to 4,500

Plant	Amount
Companies that did not have EPDs ¹	\$5,000 for first plant
Companies that already have EPDs ²	\$2,000 per plant

- 1. Companies who have never published an EPD at any plant.
- 2. For second plant and beyond.
 - a. Publish EPDs at a plant that did not have EPDs
 - b. Publish new EPDs lower than NRMCA Benchmarks at a plant with EPDs


Objective 2: Ensure Technical Proficiency of Concrete Industry Personnel

Goal: Certify 500 Individuals

- Develop and maintain education and certification program for producers
- Enhance Concrete Design Center to consult on EPDs

Objective 3: Enhance Low-Carbon Concrete Design Tools

CONVENTIO

Objective 4: Improve Benchmarks for Concrete

- Publish benchmarks in 30 regions in 2025
- Publish benchmarks
 in 50 regions in 2029

Objective 5: Improve PCRs and EPDs for Constituent Materials

- Develop PCR, benchmarks and EPDs for **admixtures**
- Update PCR and develop benchmarks and EPDs for lightweight aggregates
- Develop benchmarks for RCC
 pavements

Funding and Timeline

- NRMCA was notified of selection June 18, 2024
- Public announcement of grant selection July 16, 2024
- Grant will likely start funding in 2025
- NRMCA will begin administering pass-through grants mid-2025
 - Develop ADA compliant, searchable EPD website
 - Develop online application and payment system
 - Develop online/helpline
- Funding is for 5 years

The Concrete Industry's Perspective on Public Procurement of Low Carbon Construction Materials

Brian Killingsworth, MSCE, P.E.

Executive Vice President

National Ready Mixed Concrete Association (NRMCA)

bkillingsworth@nrmca.org

(210) 508-4923

https://www.linkedin.com/in/brian-killingsworth-65209bb/