

Charles T. Cope III, Mohammod Minhajur Raham, Francesco Focacci, Tommaso D'Antino, Iman Abavisani, <u>Christian Carloni</u>

OUTLINE

- 1) Introduction
- 2) Pull-out tests
- 3) Quasi-static and Fatigue behavior of slabs
- 4) Cross-sectional analysis and strain profiles
- 5) Crack opening analysis
- 6) Conclusion

INTRODUCTION

Research significance:

- There is a growing interest in the FRP bar community on the long term/durability behavior of the bars
- 2) There is ongoing interest to confirm the ACI formula for crack opening
- 3) Even if the fatigue behavior of FRP bars embedded in concrete is not a concern, is it possible that the crack opening can increase due to slippage of the bars?

PULL-OUT TESTS

STATIC AND FATIGUE TESTS ON SLABS

Slab 1:

tested under quasistatic conditions

Slab 2(1):

tested under quasistatic conditions up to 100 kN

Slab 2(2):

tested under quasistatic conditions up to failure after 5M cycles

Fatigue range: 5-20% of reduced strength of GFRP

STATIC AND FATIGUE TESTS ON SLABS

STATIC AND FATIGUE TESTS ON SLABS

CROSS-SECTIONAL ANALYSIS

X (mm)

STRAIN PROFILES

Slab 1 Crack 2 Crack 2 Crack 1 Crack 5 Crack 3 Crack 4 Crack 6 250 234 200 Crack 1 Crack 2 Crack 3 Crack 4 Crack 5 Crack 6 Applied force, F [kN] E 150 -50 (mm) -100 ≻ -150 100 -200 -10 200 400 600 800 1000 X (mm) 50 234 1 5 Crack 1 Crack 2 Crack 3 Crack 4 Crack 5 Crack 6 0 5 10 15 20 25 30 0 Load point deflection, Δ [mm] -50 (mm) -100 -150 -200 600 800 200 400 1000

STRAIN PROFILES

STRAIN PROFILES

STRAIN PROFILES

CRACK OPENING ANALYSIS

Slab 1, Crack 2

CRACK OPENING ANALYSIS

CRACK OPENING ANALYSIS

Slab 2(1) vs Slab 2(2), Crack 2

Slab 2(1) vs Slab 2(2), Crack 3

CRACK OPENING ANALYSIS

CRACK OPENING ANALYSIS

Comparison of the crack opening at the bottom of the beam for different stress levels in the bars and the ACI formula

BAR-CONCRETE INTERFACE

Slab 2 Crack A

ADDITIONAL TESTS

CONCLUSION

- 1) For stress level up to 20% of the reduced strength of the GFRP bar, fatigue does not seem to be a concern
- Crack opening at the bar level might indicate that fatigue damage increases slippage of the bar
- 3) The ACI formula predicts well the crack opening at the bottom of the slab
- 4) Pull-out tests (with longer bonded length) might provide information on crack opening

