

Assessment of crack spacing and crack width formulations in RC elements externally strengthened with FRP materials

Cristina Barris, Francesca Ceroni & Alejandro Pérez Caldentey

OUTLINE

□ Introduction & Review on theoretical models on cracking

□ Experimental database & comparison with existing formulation

- □ Summary and concluding remarks
- □ Future works

CRACKING PROCESS OF A RC ELEMENT

Cracking process of a RC tie without FRP strengthening:

POLITÉCNICA Udg 3

N ⊵ Nr

N < Nr

CRACKING PROCESS OF A RC ELEMENT

Tension-stiffening effect:

General expression for crack width:

POLITÉCNICA Udg 14

• •

REVIEW ON THEORETICAL MODELS: EUROCODE 2 (2004) & MODEL CODE 2020

<u>Characteristic crack width</u>: $w_k = k \cdot s_{r,max} \cdot (\varepsilon_{sm} - \varepsilon_{cm})$

Main assumptions: i) equilibrium of forces and constant shear stress contribution along the transfer length, ii) constant tension-stiffening contribution. \triangle

REVIEW ON THEORETICAL MODELS: EUROCODE 2 (2004)

Characteristic value of crack width:

Maximum crack spacing:

- k_1 : bond properties (well stablished for steel reinforcement: 0.8 good bond / 1.6 plain bar)
- k_2 : strain distribution (1.0 tensile / 0.5 bending)
- k_3 and k_4 : empirically callibrated parameters (3.4 & 0.425, respectively) ٠
- $\rho_{s,ef}$: effective reinforcement ratio, based on an effective area of concrete in tension:

$$A_{c,ef} = b \cdot min(2.5c, \frac{h-x}{3}, 0.5h)$$

- Obtained from equilibrium of forces between cracked and no-slip section
- Assumes constant tension-stiffening contribution

REVIEW ON THEORETICAL MODELS: MODEL CODE 2020

Characteristic value of crack width:

• Effect of curvature: $k_{1/r} = \frac{h-x}{d-x}$

Maximum crack spacing:

 $w_{k} = \frac{k_{1/r}}{\cdot} \cdot \frac{s_{r,max}}{s_{r,max}} \cdot (\varepsilon_{sm} - \varepsilon_{cm})$

Cover Shear stress transfer (constant distribution of shear stresses)

fib Model Code

for Concrete Structure

s_y+5Ø≤3.5r_y+s_y

$$s_{r,max} = \beta \cdot \left(k_c \cdot c + k_{\phi/\rho} \cdot k_{fl} \cdot k_b \cdot \frac{f_{ctm} \cdot \phi_s}{\tau_{bms} \cdot \rho_{s,ef}} \right)$$

- β : conversion factor from mean to characteristic value (1.7 stabilized cracking stage)
- k_c : empirical factor (=1.5); $k_{\phi/\rho}$: influence of bond (=0.25); k_b : casting factor (0.9/1.2 for good/bad conditions)
- k_{fl} : stress distribution before cracking: $k_{fl} = \frac{1}{2} \left(1 + \frac{h x_g h_{c,ef}}{h x_g} \right)$
- $\rho_{s,ef}$: effective reinforcement ratio, based on an effective area of concrete in tension:

$$A_{c,ef} = b \cdot h_{c,ef}; h_{c,ef} = \min(r_y + 5\phi_s; 10\phi_s; 3.5r_y) + (n_l - 1) \cdot s_y \le h - x$$

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - \beta_{TS} \cdot \sigma_{sr,ef}}{E_s} \ge \frac{\sigma_s}{E_s} (1 - \beta_{TS})$$

$$\sigma_{sr,ef} = \frac{f_{ctm}}{\rho_{s,ef}} \cdot (1 + \alpha_s \cdot \rho_{s,ef})$$

POLITÉCNI

Mean strain difference:

CRACKING PROCESS OF A RC ELEMENT STRENGTHENED WITH FRP

General expression for crack width:

$$w_m = s_{rm} \cdot (\varepsilon_{sm} - \varepsilon_{cm})$$

Transfer length, l_e , obtained from equilibrium of forces:

• At both reinforcements along l_e :

Between the cracked and no-slip section:

- □ Model 1: mechanical model based on assuming crack width as 2·slip, known bondslip laws between reinforcements & concrete (iterative approach).
- Model 2: simplified approach based on empirical adjustment of Eurocode 2 (2004) approach.

REVIEW ON THEORETICAL MODELS: FIB BULLETIN 90 (2019). SIMPLIFIED APPROACH

Characteristic value of crack width:

$$w_k = \frac{s_{r,max}}{\epsilon_{fm}} \cdot (\varepsilon_{fm} - \varepsilon_{cm})$$

Maximum crack spacing:

$$s_{r,max} = 1.6 \left(20 + 4 \cdot \frac{A_{c,ef}^{0.5} \cdot \phi_s}{A_s^{0.75} + \left(\frac{A_f \cdot E_f}{E_s}\right)^{0.75}} \right)$$

Cover Shear stress transfer (empirically adjusted)

c

Mean strain difference:

$$\varepsilon_{fm} - \varepsilon_{cm} = \varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_{s2} - k_t \cdot \frac{J ctm}{\rho_{ef,eq}} (1 + \alpha_s \cdot \rho_{ef,eq})}{E_s} \ge 0.6 \frac{\sigma_{s2}}{E_s}$$

• Equivalent effective ratio:
$$\rho_{ef,eq} = \frac{A_s}{A_{c,ef}} + \frac{E_f}{E_s} \frac{A_f}{A_{c,ef}}$$

 $A_{c,ef}$:

• Beams:
$$A_{c,ef} = b \cdot min(2.5c, \frac{h-x}{3}, 0.5h)$$

• Ties: area surrounding $3\phi_s$

EXPERIMENTAL DATABASE. DATA

	Beams	Ties
N. Elements	 36 elements: 19 wet lay-up EBR 6 pre-cured EBR 7 pre-cured NSM 4 NSM rods 	31 wet lay-up EBR
Cross-section dimensions	100 x 150 mm ÷ 400 x 250 mm	100 x 100 mm ÷ 200 x 200 mm
Concrete average compressive strength	17 ÷ 45 MPa	30 ÷ 92 MPa
Steel reinforcement ratio	0.54% ÷ 2.87%	0.50% ÷ 2.01%.
FRP arrangement	80÷300 x 0.167 mm sheets 240 x 1.4 mm laminates 10 x 1.4-3.0 mm strips d50 mm rods	100÷150 x 0.10÷0.11 mm sheets
FRP modulus of elasticity	65.6 ÷ 230 GPa.	57 ÷ 267 GPa
Pre-loaded element?	-	9 specimens

EXPERIMENTAL DATABASE. CRACK MEASUREMENT

General observations:

- □ The service load was defined in all cases at the stage where internal steel reinforcement reached 80% of its yield strength.
- Shrinkage strain was not reported in any of the experiments because it was not measured.

Crack measurement:

- At the level of steel reinforcement and at the lateral side of the beam
- At pure bending zone (Beams) / Along the element (Ties)
- Mean, maximum and minimum value
- Optical means (manual or DIC)

RESULTS AND COMPARISON. CRACK SPACING – BEAMS:

S _{rm,th} /	Beams		
S _{rm.exp}	EC2	MC 2020	<i>fib</i> B90
Mean	1.30	1.30	1.03
St. dev.	0.28	0.34	0.28
CoV	22%	26%	27%

- EC2 and MC2020 overpredict, by 30%, crack spacing (additional stiffness & shear bond transfer provided by external reinforcement not provided)
- □ *fib* B90 provides good agreement, both for EBR (calibrated) & NSM.
- □ High dispersion of results.

RESULTS AND COMPARISON. CRACK SPACING – TIES:

S _{rm,th} /	Ties		
S _{rm.exp}	EC2	MC 2020	fib B90
Mean	3.97	2.39	0.96
St. dev.	1.07	0.43	0.31
CoV	27%	18%	33%

- Experimental crack spacing is largely overestimated by EC2 & MC2020.
- □ *fib* B90 provides closer predictions.
- □ High scatter of results.

RESULTS AND COMPARISON. CRACK WIDTH – BEAMS:

w _{rm,th} /	Beams	
W _{rm.exp}	EC2	MC 2020
Mean	1.06	0.84
St. dev.	0.25	0.18
CoV	24%	22%

- EC2 gives the best approach, while MC2020 provides unsafe underestimation to safely predict crack width (in both cases, despite not considering the effect of external reinforcement).
- □ Two possible explanations:
 - □ Shrinkage strains at early stages
 - \Box Theoretical expression of $(\varepsilon_{sm} \varepsilon_{cm})$ does not consider the effect of FRP
 - \rightarrow for a given load level: $(\varepsilon_{sm} \varepsilon_{cm})_{th} \downarrow \rightarrow w_{rm,th} \downarrow$

RESULTS AND COMPARISON. CRACK WIDTH – BEAMS:

w _{rm,th} /	Beams		
W _{rm.exp}	EC2	MC 2020	<i>fib</i> B90
Mean	1.06	0.84	0.87
St. dev.	0.25	0.18	0.25
CoV	24%	22%	29%

- □ *fib* B90 underestimates by 13% the experimental crack width.
- □ Effect of shrinkage strains in the experimental measurements.

RESULTS AND COMPARISON. CRACK WIDTH – TIES:

w _{rm,th} /	Ties		
W _{rm.exp}	EC2	MC 2020	<i>fib</i> B90
Mean	3.64	2.16	1.30
St. dev.	1.54	1.17	0.75
CoV	42%	54%	57%

□ Very high scatter of results.

EC2 & MC2020: Similar trends than in beams: lower predicted values (although still overestimating experimental results).

□ *fib* B90: overestimation of 30%

16

RESULTS AND COMPARISON

Assessment of shrinkage strain in crack width:

- Assuming a steel yield stress of 500 MPa, Young's modulus of 200 GPa & Service load @80% of steel yield stress, the steel strain at the crack equals to: $\varepsilon_s = 0.8 \cdot 500/20000 = 2000 \, \mu\epsilon$.
- □ Assuming a free shrinkage strain $300 \div 500 \ \mu\epsilon \& k_t = 0.60$, the relative increase in the measured crack width would be $(2300 \div 2500)/2000 = 1.15 \div 1.25$.
- □ This amplifying factor can explain the gap observed between the prediction of crack width provided by *fib* Bulletin 90 for beams.
- □ For codes not considering FRP presence, this factor may explain the reduction of overprediction in EC2 and underestimation of crack width for MC 2020.
- □ For the case of ties, the large scatter of results hinders any comparison.

CONCLUSIONS (1/3)

GENERAL COMMENTS:

- Uvery few experimental results concerning cracking are available in literature. An experimental database made only of 67 elements, 56 strengthened with EBR and 11 strengthened with NSM has been collected and analysed.
- □ A generally large scatter of results is obtained in comparisons between theoretical and experimental values for both crack spacing and crack width.

CRACK SPACING:

- Generally overestimated by EC2-2004 and MC2020 provisions, especially for ties, since the additional tension stiffening effect of the external FRP reinforcement is not taken into account in the formulation.
- *fib* Bulletin 90 formulation provides a closer prediction in terms of average ratio of the predicted-to-the experimental crack spacing, for both ties and beams.

CONCLUSIONS (2/3)

CRACK WIDTH:

- May be more affected by scatter in comparison with crack spacing (dependency on the accuracy of the instruments, the load levels, the place where they are measured, but mainly the unknown level of shrinkage occurring in the specimens before the test).
- Comparison with *fib* Bulletin 90: while in beams it is around 15% underestimated, probably because of the shrinkage strains, in ties it is overestimated.
- □ Comparison with EC2 and MC2020: the distances between the theoretical values of crack width and the experimental ones are lesser, for both beams and ties. Possible reasons:
 - Rate of crack width related to the shrinkage strains, certainly present in the experimental measurements, but not considered in the theoretical formulations.
 - FRP reinforcement not considered in the effective percentage $\rightarrow (\varepsilon_{sm} \varepsilon_{cm})_{calc} \downarrow \rightarrow w_{k,calc} \downarrow$.

CONCLUSIONS (3/3)

INFLUENCE OF SHRINKAGE STRAIN:

□ Is it reliable to calibrate the mechanical models on both experimental values of crack spacing and crack width?

□ ... Or it is more correct to use the only experimental values of crack spacing and use the mechanical models to predict the crack width?

FUTURE WORKS:

□ There is a need for a <u>new model taking into account the contribution of both internal and external</u> <u>reinforcement</u>.

□ **More experimental data** is need to carry out reliable calibrations of the models.

FUTURE WORKS (BASED ON MODEL CODE 2020 APPROACH)

□ New crack spacing equation, considering a new transfer length that assumes a constant shear stress distribution @ steel-concrete and @ FRP-concrete interfaces: $l_e = \frac{f_{ctm}}{4\tau_{sm}} \cdot \frac{\phi_s}{\rho_{s+FRP,ef}}$

$$\Box$$
 ... with an equivalent reinforcement ratio: $\rho_{s+FRP,ef} = \frac{A_s + \xi_1^2 A_f}{A_{ct,ef}}$

□ ... that is adapted to EBR and NSM configurations:

• EBR:
$$\xi_1^2 = \frac{\tau_{bmf}}{\tau_{bms}} \cdot \frac{\phi_s}{4t_f}$$

• NSM: $\xi_1^2 = \frac{\tau_{bmf}}{\tau_{bms}} \cdot \frac{\phi_s}{2t_f}$

 $\Box \text{ New crack spacing: } s_{rmax} = \beta_w \cdot (k_c \cdot c + k_{\phi/\rho} \cdot k_{fl} \cdot k_b \frac{f_{ctm} \cdot \phi_s}{\tau_{bms} \cdot \rho_{s+FRP,ef}})$

$$\Box \text{ New mean strain difference: } \varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_{s2} - \beta \cdot \frac{f_{ctm}}{\rho_{s+FRP,eff}} (1 + \rho_{s+FRP,eff} \cdot \alpha_{s})}{E_s}$$

Assessment of crack spacing and crack width formulations in RC elements externally strengthened with FRP materials

Cristina Barris, Francesca Ceroni & Alejandro Pérez Caldentey

THANK YOU!

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE