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Conventional Reinforced Concrete
• Reinforcements are often 

used to improve tensile 
behavior. 

• They help increase 
concrete toughness and 
prevent catastrophic 
tensile failure.  
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Nature-Inspired Architectures

Bouligand:

Improving 

fracture 

toughness

Rosewitz et al., (2019)

Alternating 

layers in Nacre:

Improving 

fracture 

toughness

Plant Stem:

Improving flexural 

behavior

Honeycomb, 

sandwich effect:

Improving 

compressive 

strength

Pinto et al., (2016) Hector et al., (2019) Speck et al, (2013)
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Plant Stem-Inspired Macro-Architectures:
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Experimental Analysis:

3-Point Bending DIC

• Mid-point deflection at rupture: 

➢Random speckle pattern

➢GOM Correlate software

➢Mortar, w/c=0.42 with 

polymeric reinforcement 

Research Methodology
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Reinforcement Design

To find the balanced longitudinal reinforcement ratio,

based on theories from mechanics of materials:

• Depth of reinforcement: 𝒅 = 𝒉 − 𝒄𝒗𝒓 − (
𝒕𝒓

𝟐
)

• Depth of neutral axis: 𝒄 =
Ɛ

𝒄𝒖

𝜺𝒄𝒖+ 𝜺𝒚
× 𝒅

• Cross-section: 𝑨𝒓 =
𝟏

𝒇𝒚
 × (𝟎. 𝟖𝟓 ×  𝒇𝒄

′  × 𝒃 ×  𝜷𝟏  ×  𝒄)

• Reinforcement ratio: ρbal= 
𝑨𝒓

𝑨

Namakiaraghi et al., (2023)

Research Methodology
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Numerical analysis:

• Mortar Matrix: Concrete Damaged Plasticity

• Reinforcement: Ductile Damage

• Interaction: Embedded Region

𝒅𝒄 = 𝟏 −
𝝈𝒄

𝝈𝒄𝒖

𝒅𝒕 = 𝟏 −
𝝈𝒕

𝝈𝒕𝟎
 

Namakiaraghi et al., (2024)

b)2 mm

Research Methodology
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Calibration of FEM Model:

Namakiaraghi et al., (2024)

a)

b)

c)

FEM Damage Evolution Crack Propagation in Experiment

Mortar

Reinforcement

Initial Cracking

Damage Evolution

Crack Propagation

Displacement = 0.2 mm

Displacement = 0.4 mm

Displacement = 2 mm

Crack Propagation

Crack Propagation

Crack Initiation
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• Enhanced flexural strength

• Improved ductility

• Enhanced bond strength

• Reinforcement ratio was adjusted

• Numerical model was developed
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Macro-Architected Reinforcement Design:
• Cellular

➢ Hexagonal (HXN)

➢ Kagome (KGM)

➢ Sinusoidal (SNS)

• Hollow

➢ Hollow bar (SHB)

➢ Plant stem (SPS)

SPS SHB

• ρbal

• Cover

Design constraints
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Design, manufacturing and casting process:

Slicing 3D Printing

CURA

0.2 mm

Main: PLA

Support: PVA

3D CAD

Namakiaraghi et al., (2024)

AutoCAD 

3D Model

Casting

w/c = 0.42

Silica sand
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Results: strength vs toughness

Namakiaraghi et al., (unpublished data)

Hollow

Cellular

Plain

• From bottom left to top right, the 

flexural properties improve. 

• Compared to plain, incorporating the 

polymeric reinforcements significantly 

enhances the flexural properties. 

• Hollow reinforcements perform better 

than cellular.
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Concept of Area Moment of Inertia:

d = 20.88
x x

y y

a) b)

do = 50.8

76.2

di = 46.31

76.2

76.2

𝜎 =
𝑀𝑐

𝐼
Incorporation of hollow motif

~ 10 times more 

resistance to bending
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Mechanics of Materials (MoM)-based Design

d = 20.88
x

y

a)

76.2

76.2

𝜎 =
𝑀𝑐

𝐼
Distance from axis

~ 15 times more 

resistance to bending

d = 8.53

x

y

h = 21.14 h h

h h h

b)

76.2
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MoM + Hollow Design:

MoM-basedSingular rebar

Solid Hollow Solid Hollow
~ 10Ix ~ 15Ix ~ 12.5IxIx



Slide 16Presented By: Amir Farnam, PhD (yf338@drexel.edu)
16

Design Layout:
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Results: 3-Point Bending

Namakiaraghi et al., (2024)4.5″

3″

3″

Solid

Hollow
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Results: 3-Point Bending, MoM

Namakiaraghi et al., (2024)

SimulationExperimentSimulationExperiment

Rupture
Matrix 

failure

Solid Hollow
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Results: failure mechanisms

Namakiaraghi et al., (2024)

20 mm

Tensile crack

Shear crack

Reinforcement 
did not break

y-z

x-y

Damage at 
interface
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Strength vs toughness:

Namakiaraghi et al., (2024)

• Higher area moment of inertia and 

bond strength work together to 

enhance the flexural properties in 

hollow architectures.

• Synergetic integration of nature-

inspired motifs and MoM-based 

design provided the best flexural 

properties.



Slide 21Presented By: Amir Farnam, PhD (yf338@drexel.edu)

Plain concrete, 
a quasi-brittle 
material

MoM-based 
reinforcement design

Nature-inspired macro-
architected 
reinforcement design 

Introduction of hollow 
motifs into the MoM-
based design

Summary: Development of Engineered Polymeric 
Reinforced Cementitious Composite (EPRC):

d

x

h h

h h h

h
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