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Conventional Reinforced Concrete

 Reinforcements are often

used to improve tensile Beam Width _ girryps
behavior. y g
Effective :
. Depth 4
* They help increase Longitudinal Bars £

concrete toughness and !
prevent catastrophic
tensile failure.

Reinforcement 3
Ratio (p) S5, S
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Nature-Inspired Architectures

Bouligand: Alternating

Plant Stem:
Improving layers in Nacre: sandwich effect: Improving flexural
fracture Improving Improving behavior
toughness fracture compressive
toughness strength
Pinto et al., (2016) Rosewitz et al., (2019) Hector et al., (2019) Speck et al, (2013)
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Plant Stem-Inspired Macro-Architectures:
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Research Methodology

Experimental Analysis:

« Mid-point deflection at rupture:

» Random speckle pattern

» GOM Correlate software

»Mortar, w/c=0.42 with

3-Point Bending DIC polymeric reinforcement
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Research Methodology

Reinforcement Design

Namakiaraghi et al., (2023)
y ! b ! 80“

To find the balanced longitudinal reinforcement ratio,
based on theories from mechanics of materials:

Depth of reinforcement: d = h — cvr — (%”)

Depth of neutral axis: ¢ = (L) X d

(gcut gy)
« Cross-section: A, = (fi) X (0.85 X f. Xb X 1 X C)
y
« Reinforcement ratio: PbaF%
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Research Methodology

Numerical analysis:

. .o de
* Mortar Matrix: Concrete Damaged Plasticity Ocu

* Reinforcement: Ductile Damage

 Interaction: Embedded Region

Namakiaraghi et al., (2024)
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alibration of FEM Model:

FEM Damage Evolution Crack Propagation in Experiment

a) Displacement = 0.2 mm Crack Initiation

DAMAGET
(Avg: 75%)

+8.610e-01
+7.893e-01 Mortar
+7.175e-01 2ra H
+6.4586-01 Initial Cracking
+5.740e-01
+5.023e-01
+4.305e-01 .
+35880-01 Reinforcement
+2.870e-01
+2.153e-01
+1.435e-01

+7.17 5e-02
+0.000e+00

Crack Propagatio

DAMAGET
(Avg: 75%)

+8.610e-01
e
16,458 01 Damage Evolution

+5.740e-01
+5.023e-01 ‘____-—
+4.305e-01

+3.588e-01
+2.870e-01
+2.153e-01
+1.435e-01
+7.175e-02
+0.000e+00

DAMAGET
(Avg: 75%)

+8.610e-01
+7.893e-01
+7.175e-01
+6.458e-01
+5.740e-01
+5.023e-01
+4.305e-01
+3.588e-01

+2.870e-01
+2.153e-01
+1.435e-01
+7.17 5e-02

T0i608+00 Namakiaraghi et al., (2024)
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Enhanced flexural strength

Improved ductility

Enhanced bond strenqgth

Reinforcement ratio was adjusted

Numerical model was developed

500 —
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Macro-Architected Reinforcement Design:

3

« Cellular w=50-8| o
> Hexagonal (HXN)
> Kagome (KGM)
> Sinusoidal (SNS)

- Hollow
» Hollow bar (SHB)
> Plant stem (SPS)

Design constraints [' Poal

Cover -
SPS 1 SHB
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Design, manufacturing and casting process:

3D Solid

Total volume of solid = V,

AutoCAD CURA Main: PLA w/c = 0.42
3D Model 0.2 mm Support: PVA Silica sand

Namakiaraghi et al., (2024)
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Results: strength vs toughness

[]Sinus <> Kagome (O SingPStem
& Hexagon @ SingHolBar X Plain

8 ! | ! | ! | ! | !

|1 . |+ From bottom left to top right, the
6 — i flexural properties improve.

i « Compared to plain, incorporating the
4_

polymeric reinforcements significantly

enhances the flexural properties.

N
|

*********************************************************************************************** - |+ Hollow reinforcements perform better

Modulus of Rupture (MPa)

o

] than cellular.

Toughness (N.m
g ( ) Namakiaraghi et al., (unpublished data)
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Concept of Area Moment of Inertia:

y Incorporation of hollow motif y
meeee——) ) |

76.2
e — — X———

v

76.2 > ~10times more
Bl resistance to bending
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Mechanics of Materials (MoM)-based Design

Mc
O = _I
Distance from axis
—
76.2
L — — X ——— L — —

~ 15 times more
resistance to bending
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MoM + Hollow Design:

Singular rebar MoM-based
Solid Hollow Solid Hollow
1, ~10l, ~ 15I, ~12.51,
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Design Layout:
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Results: 3-Point Bending

Solid

b
A
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I | |
3 4
Deflection (mm)

Hollow

4.5" Namakiaraghi et al., (2024)
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Results: 3-Point Bending, MoM

Experiment Simulation
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Results: fallure mechanisms

Damage at
interface

Shear crack

Reinforcement
= did not break

X-y Namakiaraghi et al., (2024)
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Strength vs toughness:

[ ] Sinus <> Kagome O SingPStem /\ HolReb-Stir
€ Hexagon @ SingHolBar X Plain » Reb-Stir
[ I 1 l [ l 1

« Higher area moment of inertia and

-
N

bond strength work together to

enhance the flexural properties In

Modulus of Rupture (MPa)

hollow architectures. Hollow i
iInspired motifs and MoM-based " T
design provided the best flexural 0 3 6 9 12 15 18

Toughness (N.m)

properties.

Namakiaraghi et al., (2024)
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Summary: Development of Engineered Polymeric
Reinforced Cementitious Composite (EPRC):

Introduction of hollow

Nature-inspired macro- motifs into the MoM-
‘ architected based design
: reinforcement design
Plain concrete, MoM-based
a quasi-brittle reinforcement design
material
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