Mechanical Characterization of 3D Printed Ultra High-Performance Concrete

ACI Fall 2024 Convention

Shady Gomaa

November 3rd, 2024

Northwestern ENGINEERING

Background

Background

Problem Statement

Full-Scale Structural Tests

Problem Statement

Deeper understanding of the failure mechanisms of 3Dprinted structures to develop better printing methods and systems. Calibrating and validating computational models, greatly reducing the "trial and error" phase of concrete 3DP.

Experimental Campaign

- 1. Development of a printable* UHPC concrete mix and printing system using rheological modifiers and fiber reinforcement.
- 2. Characterization of mechanical properties of 3d-printed specimen.

Remember: Shape Stability for Different Printing Systems

Experimental Campaign

- 1. Development of a printable* UHPC concrete mix and printing system using rheological modifiers and fiber reinforcement.
- 2. Characterization of mechanical properties of 3d-printed specimen.

Materials and Methods

The Material

Base Mix: ERDC UHPC

Ingredient	Туре	Proportion
Cement	LaFarge Type H	1.0000
Silica Sand	F-50	0.9674
Silica Flour	Sil-co-sil 75	0.2768
Silica Fume	Elkem 940U	0.3890
Superplasticizer	ADVA-190	0.0180
Water	Тар	0.2082

Rheological Modifier

ActiGel[®] 208 (Nano-Clay) Added as % weight of binder

Fiber Reinforcement

HiPer Fiber[®] 6mm Steel Fiber Added as % of total volume

The Material

Base Mix

NC Added

Rheological Modifier

ActiGel[®] 208 (Nano-Clay) Added as % weight of binder

Fiber Reinforcement

HiPer Fiber[®] 6mm Steel Fiber Added as % of total volume

Printing Systems

Automated Machines

ABB Robotic Arm

Extrusion Systems

Auger system

Piston type system

Pump Systems

TK 7 Pump

Nozzle Shapes

Circular Nozzle

<u>Corrugated</u> smooth Vertical Outlet

Rectangular Nozzle

Horizontal Outlet

Printing System

(a) 3-axis gantry robot
(b) Piston extruder (Milwaukee[®] M18)
(c) 12x30mm rectangular nozzle with 90° bend

Printing Procedure

Speed: 6.5mm/s **Extrusion Rate:** 0.027cc/s Wait time: 3min Num. of Layers: 3

Specimen Preparation

- 1. Specimen is printed
- 2. Transferred to humidity-controlled curing room (48hr)
- 3. Cut to desired shape using diamond-coated band saw

Specimen Preparation

4. Specimen is capped using flowable variant of UHPC mix

Specimen Preparation

Specimen Orientation

Specimen Orientation

- $x \rightarrow$ longitudinal direction (print direction)
- $y \rightarrow$ transverse direction
- $z \rightarrow$ normal direction

 $\sigma = P/A$

 $\sigma = P/A$

 $\sigma = P/A$

 $\sigma = 3PS / 2BH^2$

04 16 :141

Fel

 $\sigma = 3PS / 2BH^2$

Northwestern

Northwestern

 $\sigma = 3PS / 2BH^2$

Results Splitting

Qualitative Geometric Effects

Conclusions

Conclusions

- 1. Clear anisotropic behavior observed in uniaxial compression with respect to loading direction in 3d-printed UHPC specimen.
- 2. Notched three-point bending and tensile splitting tests show no significant effects from inter-layer bond strengths for un-reinforced specimen.
- 3. Addition of fibers produces weak zones in the inter-layer boundary, altering the failure modes and the anisotropic behavior compared to un-reinforced specimen.

Future Work

Large Scale Printing

Large Scale Printing

Acknowledgements

People

Prof. Gianluca Cusatis

Dr. Raul Marrero Rosa

Elmer Irizarry

Ayesha Ahmed

Samuel Feldman

Chyim Bowen

Tapiwanashe Bhibho

Funding

Questions?

Email: Shady_gomaa@northwestern.edu

Group Website: https://sites.northwestern.edu/m2im/

