Microstructural and thermodynamic analyses elucidate the effects of expansive agent and shrinkage reducing admixture on performance of fiber-reinforced mortar

Kamran Aghaee

Postdoctoral Associate

Cornell University

Outline

2

- Investigation method
- Experimental methods
- Experimental results
- Mechanical and shrinkage properties
- Microstructural analysis
- Thermodynamic analysis
- Conclusions

Investigation method

- Mechanical and shrinkage properties
- Compressive strength
- Fiber pull-out
- Shrinkage

Measuring effect of EA and SRA on FRM macro mechanical properties

- XRD
- TGA
- Microstructure analysis MIP
 - SEM EDS
 - Micro indentation

Measuring effect of EA and SRA on FRM microstructure

Thermodynamic analysis

3

- Phase assemblage
- Compressive strength
- Chemical shrinkage

EA and SRA effects on FRM based on thermodynamic principles

Experimental methods

Materials

Expansive agent (EA)

Initial expansion compensates for shrinkage CaO-based (Portlandite) $CaO + H_2O \rightarrow Ca(OH)_2$

Shrinkage reducing admixture (SRA)
Non-ionic surfactant reduces the surface
tension of pore solution.

Drying

NCRETE

Experimental methods

Mixture matrix

Mixture	Replacement ratio (%)			
	EA	SRA		
REF	0	0		
10EA	10	0		
2SRA	0	2		
10EA2SRA	10	2		

w/cm = 0.4 Steel fiber = 0.5% Aspect ratio = 65

Experimental results: Mechanical and shrinkage properties

Compressive strength Fiber pull-out **Shrinkage**

800

600

CONVENT

REF

-2SRA

-10EA

10EA2SRA

Experimental results: Microstructural analysis

TGA XRD MIP

7

Mixture	Median pore	Total porosity	Percentage of pore type on total pore volume (%)		
	size (nm)	(%)	Gel pores (d < 30 nm)	Capillary pores	Macro pores
REF	38	19.4	21.4	78.3	0.3
10EA	71	26.3	17.6	41.1	41.3
2SRA	31	20.7	19.5	80.4	0.1
10EA2SRA	53	25.9	18.0	73.1	8.9

Mixture	Ettringite (wt%)	Portlandite (wt%)	C ₃ S/C ₂ S (wt%)	
REF	3.5	13.2	6.0	
10EA	2.8	19.3	5.5	
2SRA	3.4	13.1	6.3	
10EA2SRA	3.5	14.4	5.3	

MIP

Experimental results: Microstructural analysis

SEM EDS point scanning

Si/Ca=0.4-1.25 → CSH

Higher Si/Ca \rightarrow longer silicate chain

enhanced hardness and elastic modulus

100

100

Higher $Ca \rightarrow CH$, AFt, and AFm

Experimental results: Microstructural analysis

SEM EDS line scanning

9

CONVENT

Micro-hardness

10EA 10EA2SRA → Lower strength

10EA

Strength reduction between 50 and 100 µm

Thermodynamic analysis

GEMS (Gibbs Energy Minimization)

- Minimizing Gibbs energy of a complex chemical system at given T and P.
- Mass balances are computed based on equilibrium phase assemblages and speciation in the aqueous phase, from total bulk composition.

$\Delta G = \Delta H - T \Delta S$

H: enthalpy (total energy)

T: temperature

11

S: entropy (degree of disorder)

Thermodynamic analysis

Input

Mixture proportioning & chemical compositions of binder materials

Output

- Hydrates (phase assemblages)
- Degree of reaction of binder (cumulative heat release)
- Porosity
- Chemical shrinkage
- pH

Applicable to OPC and blended systems

Thermodynamic analysis

Phase assemblage

ONVENT

Compressive strength Chemical shrinkage

2

2

ଷ୍ପି

◇

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

14

Conclusions

15

- 1. EA and EA+SRA <u>eliminated</u> shrinkage after 10h and remained in expansion after 28 days \rightarrow high CH.
- 2. High content EA/SRA <u>reduced</u> mechanical properties (18% f'_c , 29% fiber pull-out).
- 3. EDS LS indicated strong fiber-matrix ITZ for REF \rightarrow higher fiber pull-out strength. Large gap between Si and

Ca with the use of EA/SRA indicated lower density and quality of microstructure.

- EDS PS showed that Si/Ca reduced with EA/SRA. Higher Si/Ca over 0.4 was observed in the strip between 50 and 100 μm (confirmed by Micro-hardness).
- 5. MIP results indicated higher porosity using high contents of EA/SRA, especially 10EA (higher macro pores), while lowest for REF mixture.
- 6. Thermodynamic simulations \rightarrow phase assemblages of mixtures. 10EA formed more CH but less CSH

10EA2SRA while effective in shrinkage elimination exhibited lowest mechanical properties.

• Dr. Kamal H. Khayat

Vice chancellor for research and innovation

Vernon and Maralee Jones Professor of Civil Engineering at Missouri S&T

• Dr. Aditya Kumar

Associate Professor of Materials Science and Engineering at Missouri S&T

• Dr. Taihao Han

16

Assistant Research Professor of Materials Science and Engineering at Missouri S&T

- Aghaee, K., Han, T., Kumar, A., & Khayat, K. H. (2023) "Mechanisms underlying the effect of expansive agent and shrinkage reducing admixture on mechanical properties and fiber-matrix bonding of fiber-reinforced mortar." *Cement and Concrete Research*, 172, 107247.
- Aghaee, K. & Khayat, K. H. (2022) "Benefit and drawbacks of using multiple shrinkage mitigating strategies to enhance performance of fiber-reinforced mortar." *Cement and Concrete Composites*, 133, 104714.
- Aghaee, K., & Khayat, K. H. (2021). Effect of shrinkage-mitigating materials on performance of fiber-reinforced concrete–an overview. Construction and Building Materials, 305, 124586.
- Aghaee, K. (2022). Synergistic effect of shrinkage mitigating strategies on performance of fiber-reinforced cementitious composites. Missouri University of Science and Technology.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

YOUR ATTENTION!

THANK YOU FOR

Any Questions?

