

Best Practices for Verifying and Validating Complex Non-Linear Finite Element Models of Concrete Structures

Robert MacNeill Associate Principal, Simpson Gumpertz & Heger Inc., 480 Totten Pond Road, Waltham, MA 02451, USA Tel: (781) 907-9481, email: ramacneill@sgh.com

Robert MacNeill, P.E.

- Associate Principal, Simpson Gumpertz & Heger (SGH)
- 28 years of engineering experience
 24 as an engineering consultant
 4 in aerospace
- Education: BS/MS Mechanical Engineering, RIT, 1995
 Grad studies, Aero/Astro Engineering, Stanford 1995/1996
- Areas of Expertise: Nonlinear dynamic finite element analysis (FEA), with LS-DYNA Impact, blast, and failure analysis Transportation safety (rail vehicle design, crashworthiness, aircraft impact) Test design and implementation, including full-scale impact & blast testing

Outline

Before You Start Consider best approach
Establish Methodology Building up from basics
Case Study: Aircraft Impact Analysis of Nuclear Powerplant Putting it together in practice

Before you Start: Consider What the Model Needs to Do

 Consider how accurate or conservative the answer needs to be for the problem

- Will hand calcs and simplified methods suffice?
- Most efficient
 - Looking to ensure something meets requirements
- Some simplifying assumptions can be made Looking for precision (within X% of actual response)
- A well-characterized methodology is needed. Most complex

Before you Start: Consider What the Model Needs to Do

• Consider Scale Needed:

Fine Detail: Modeling of aggregate and paste Normal Detail: Continuum of concrete with explicit rebar models Coarse Model: Smeared continuum of concrete and reinforcement

Before you Start: Consider What the Model Needs to Do

• Consider Anticipated Nonlinear Effects :

Concrete:

- Cracking
- Spalling, ejecta
 Steel:
- Necking and Failure
- Bond failure
- High-rate loading (impact, blast)

Establish Methodology: Build up from Basics

- Single element tests
- Replicate material tests
 - Unconfined compression, split tensile, confined compression
 - Tensile tests, split Hopkinson bar tests
- Subassembly or system level tests
 - compared to known response: model the test, closedform solutions

Methodology established: apply to real problems

Establish Methodology: Build up from Basics

- Choose appropriate material constitutive models
 Types of behavior needed
- Concrete—geomaterial models
- Steel Reinforcement—Plastic hardening models
- Choose models that can handle application requirements
 Nonlinear models
 Cyclic response—hysteretic behavior
 Failure modeling
 Thermal effects
 Rate effects

American Concrete Institute

Crawford, et al, Use & Validation of MAT72R3 in LS-DYNA, 2011

Case Study

AIRCRAFT IMPACT ASSESSMENT FOR NUCLEAR POWERPLANT STRUCTURES

Case Study: Establish Methodology for AIA for NPPs

- US CFR requires aircraft impact analysis (AIA) for all reactor and fuel storage structures at nuclear powerplants (NPP)
- Historically, this was done with hand calculations. Within the last 20 years, nonlinear FEA is typically employed
- We can not rely on full-scale testing to validate global models Instead, we build up methodology from simple models to medium scale and validate along the way

Material Model Calibration: Concrete

- Concrete material modeling
- Concrete nonlinear response is complicated and multivariable (e.g., material characteristics, loading environment)
- Model calibration can be
 - Simple: relying on simple inputs and extrapolations of underlying empirical inputs
 - \rightarrow less specific to the particular application
 - Complex: user calibration from material-specific characterization tests

Material Model Calibration: Concrete

 Some factors to consider Unconfined compression and tensile strength Strength under variable confinement pressures Strain rate strength dependency Crack/Damage modeling Hysteretic response Mesh sensitivity

IRIS 2010 Experiments IRSN Test Results

Loading-unloading cycles were carried out to determine evolution of Young's modulus.

Material Model Calibration: Steel

- Material model was calibrated by replicating tensile test coupon. Basic Steps:
 - Apply first-order corrections on published engineering stress-strain to estimate true stress-true strain curve
 - Adjust post-necking points to replicate engineering stress-strain response with tensile test model (test1f)
 - 3. Add failure models to calibrated material model
- Option A: Critical strain for element erosion (test1g)
- Option B: Stress triaxiality-based damage and failure model (GISSMO2c)

Used for bolt failure analysis

Tensile Test Model Example

Necked region with localized plastic strain

American Concrete Institute

Material Model Calibration: Strain Rate Effects

Lots of variability

Concrete

Benchmark Against Appropriate Experiments

 Validate methodology for a carefully planned and executed test involving similar behavior to our application
 2010-2012 IRIS experiments

- Reinforced concrete panel impact tests
- Well-characterized material response
- Appropriate loading: flexure and puncture tests

IRIS Experiments

Test Frame

Test Reinforced Concrete Panel

- Concrete: solid elements
- Rebar: beam elements
- Angle: shell elements

Corner angles

Strain gauges on panel face

Panel concrete

American Concrete Institute

Impact Missiles

Puncture Tests

Flexure Tests

and Case, Shell Elements

Elements

Solid elements

aci

American Concrete Institute

elements

IRIS Experiment Benchmarking

- Directly compare models to test observations:
 <u>Visual/qualitative</u>:
- damage, crack patterns
 Measured/quantitative:
- Strains: concrete, rebar, frame
- Load: support
- Displacements: panel, frame

Data from VTT Bending Tests

Section from Puncture Test

Global Modeling

Scale up to application of interest

Apply established methodology + industry-accepted practice for the application (e.g., NEI 07-13)

Checks at large scale:

Compare to hand calculations—is the response within expected bounds? Check calculation energies, timestepping, and other usual model checks for nonlinear explicit FEA

Check reactions match inputs

Apply intuition: does the response look reasonable

Aircraft Load Development

Aircraft Impact Analysis

Post Impact Response

Load Application Example

Initialized Model

- Valid modeling approaches start with planning and proper selection of model approach
- Validation and Verification should be performed at all stages of methodology development
- Start simple and build up complexity, validating/verifying against known responses along the way
 - Characterize fundamental material response
 - Compare to testing and other verification means

Questions for Audience

• What V&V steps do you employ in your nonlinear analyses?

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

