

Decarbonizing Concrete by Using Biochar as Lightweight Aggregate (LWA)

By: Mahdi Mirabrishami^a, Farshad Rajabipour^a

^a Department of Civil & Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA

Biochar is a **carbon-rich** material produced when **biomass** undergoes a process called **pyrolysis**.

Owing to its high sequestered CO_2 content, **biochar** could notably reduce the CO_2 footprint of concrete structures.

Cement CO₂ footprint = + 0.86 kg CO₂ / kg of cement

Biochar CO₂ footprint = - 2.20 - 2.70 kg CO₂ / kg of biochar

This research aims to assess if biochar could act as an effective internal curing agent in low w/c systems.

- Could biochar particles keep Internal RH high and control autogenous shrinkage in low w/c systems?
- Does biochar comply with ASTM C1761 requirements for LWAs?
- □ How does grinding impact biochar's internal curing capabilities?
- □ How does biochar as LWA affect compressive strength, air content, and flowability?
- □ How does biochar as LWA impact cement hydration?

The present study utilizes biochar from 2 different manufacturers in **ground** and **unground** form as **sand replacement.**

The porous nature of biochar could introduce this material as a suitable **LWA** with **internal curing** capabilities.

Biochar ID	OD Relative Apparent Density	
Met	0.47	
AB	0.72	
Normal Sand OD Relative Apparent Density = 2.62		

Unground biochar particles had notably high water absorption capacity (Abs.) while satisfying ASTM C1761 gradation requirements.

Biochar ID	72-hour Abs. (%)	Desorption rate (% of 72-hour Abs.)
Met	244.0	88.4
AB	131.2	79.5

A lower desorption rate necessitates the incorporation of higher biochar contents to get the same internal curing effect.

9

Isothermal calorimetry results demonstrated that cement hydration is improved in the presence of biochar particles as internal curing agents.

As internal curing agents, biochar particles could effectively keep Internal RH high.

As **internal curing** agents, biochar particles could control autogenous shrinkage effectively.

- Biochar particles could effectively keep Internal RH high and control autogenous shrinkage in low w/c systems.
- Unground Met biochar meets ASTM C1761 standards for LWAs, while unground AB biochar only fails the desorption rate requirement.
- Grinding biochar particles adversely affects their internal curing capabilities.
- Biochar particles enhance cement hydration as internal curing agents; however, they reduce strength due to increased overall porosity.
- □ Added in a presoaked state, biochar particles reduce air content.

