Phase-field cohesive zone crack propagation model for hard-soft architected materials

Aimane Najmeddine, Ph.D. Associate Research Schola

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Nacre's overlapping crystal-protein plates provides toughness

Hypothesis: hard-soft multi-materials enhance mechanical performance

Displacement

How do we numerically investigate fracture in hardsoft multi-material assemblies to better understand the toughening mechanisms involved in their response to fracture?

How do we numerically investigate fracture in such composite materials?

Phase-field captures crack propagation through regularization of sharp crack topology

Regularize the sharp crack topology by a limited diffuse damage band

A time-dependent phase-field damage variable $d(\mathbf{X}, t) \in [0,1]$ is introduced where d = 0 indicates no fracture and d = 1 indicates complete fracture

 $\begin{array}{l} \begin{array}{l} \text{Crack} \\ \text{surface} \\ \text{energy} \end{array} \left[\Psi(\mathcal{S}_0) = \int_{\mathcal{S}_0} G_c \, dA \approx \int_{\Omega_0} G_c \, \gamma(d, \nabla d) dV \right] G_c: \text{ Fracture energy} \quad \gamma: \text{ crack surface density function} \\ \\ \text{where} \quad \gamma(d, \nabla d) = \frac{1}{c_\alpha} \left[\frac{1}{l_c} \alpha(d) + l_c |\nabla d|^2 \right] \qquad c_\alpha = 4 \int_0^1 \sqrt{\alpha(\beta)} \, d\beta = \begin{cases} 2, & \alpha(d) = d^2 & \text{AT2} \\ \frac{8}{3}, & \alpha(d) = d & \text{AT1} \\ l_c: \text{ length scale} \end{cases} \end{array}$

Phase-field captures crack propagation through regularization of sharp crack topology

Variational principle

 $g(d) = (1 - d)^2$: degradation function

 $(\mathbf{u}(\mathbf{x}), d(\mathbf{x})) = \operatorname{Arg}\{\min \Pi(\mathbf{u}, d)\}\$ subject to $\dot{d}(\mathbf{x}) > 0, d(\mathbf{x}) \in [0, 1], \ \mathbf{x} \in \mathbb{R}^n, n = 1, 2, 3$

Contribution of interface to the crack surface energy can be accounted for separately

Park-Paulino-Roesler (PPR) [1] was used to capture dissipated energy at interfacial zones

 $\phi(\Delta \mathbf{u}_{n}, \Delta \mathbf{u}_{t}) = \min(G_{c}^{int}{}_{n}, G_{c}^{int}{}_{t}) + \left[\Gamma_{n}\left(1 - \frac{\Delta \mathbf{u}_{n}}{\delta_{n}}\right)^{\alpha}\left(\frac{m}{\alpha} + \frac{\Delta \mathbf{u}_{n}}{\delta_{n}}\right)^{m} + \left(G_{c}^{int}{}_{n} - G_{c}^{int}{}_{t}\right)\right] \times \left[\Gamma_{t}\left(1 - \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}}\right)^{\beta}\left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}}\right)^{n} + \left(G_{c}^{int}{}_{n} - G_{c}^{int}{}_{n}\right)\right]$ $G_{c}^{int}{}_{n}, G_{c}^{int}{}_{t}: \text{ Energies for mode I and mode II fracture, respectively}$ $\Gamma_{n}, \Gamma_{t}: \text{ Energy constants}$ $\Delta \mathbf{u}_{n}, \Delta \mathbf{u}_{t}: \text{ Normal and tangential components of the displacement jump}$ $\delta_{n}, \delta_{t}: \text{ Final crack openings representing complete failure in the normal and tangential directions, respectively}$ Material A

Normal traction force

The
$$T_n(\Delta \mathbf{u}_n, \Delta \mathbf{u}_t) = \frac{\Gamma_n}{\delta_n} \left[m \left(1 - \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{\alpha} \left(\frac{m}{\alpha} + \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{m-1} - \alpha \left(1 - \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{\alpha-1} \left(\frac{m}{\alpha} + \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{m} \right]$$
$$T_n(\delta_{nc}, 0) = \sigma_{max} \left[\Gamma_t \left(1 - \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^{\beta} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^n + \langle G_c^{int} - G_c^{int} \rangle \right]$$

 $T_t(0,\delta_{tc}) = \tau_{max} \qquad \mathbf{x} \left[\Gamma_n \left(1 - \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{\alpha} \left(\frac{m}{\alpha} + \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^m + \left\langle G_c^{int} - G_c^{int} \right\rangle \right] \left(\frac{\Delta \mathbf{u}_t}{|\Delta \mathbf{u}_t|} \right)$

 $T_t(\Delta \mathbf{u}_n, \Delta \mathbf{u}_t) = \frac{\Gamma_t}{\delta_t} \left[n \left(1 - \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^{\beta} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^{n-1} - \beta \left(1 - \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^{\beta-1} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^n \right]$

Updated crack surface energy

Tangential traction force

$$\int_{\Gamma_0} G^i dA = \int_{\Gamma_0} (\Delta \mathbf{u})^T \left[\mathbf{T} \right] dA \text{ where } \left[\Delta \mathbf{u} = \mathbf{u}_1 - \mathbf{u}_2 \right] \text{ and } \left[\mathbf{T} = (T_n, T_t) \right]$$

Displacement jump Traction force vector

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB [1] K. Park et al. / J. Mech. Phys. Solids 57 (2009) 891-90

Crack propagation was investigated for four cases of hard-hard and hard-soft composites

Crack propagation was investigated for four cases of hard-hard and hard-soft composites

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Crack propagation mode depends on material and interfacial fracture properties

 α : Parameter characterizing elastic mismatch of bi-material system [1]

 $\frac{g_c^{int}}{g_c^B}$: Ratio between the fracture energy of the interface and the fracture energy of bulk Material B [1]

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

LEFM shows two predominant crack growth mechanisms in hard-hard bi-layer materials

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Crack penetration

Simulation predictions

Crack deflection

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Simulation predictions

Overall enhanced performance for the case when crack deflects

Crack impinging on an inclined interface

Framework predictions

Crack deflection

Phase-field (ii) (iv) (iii) (i) 60 <mark>, (</mark>іі) 50 (N) 40 30 20 0.000 (iii) Stress S₂₂(MPa) (ii) (iii) (iv) 10 (iv) (i) 0 885.103 817.614 750.125 682.636 615.147 480.169 412.680 345.192 277.703 210.214 142.725 75.236 7.747 -59.742 -127.231 0.01 0.02 0.03 0.04 0 Displacement (10⁻² mm)

Interface separation is captured

Crack penetration

Zero-thickness cohesive elements used for interface - 4-node quadrilateral plane strain elements used for bulk

Material properties were determined using specific mechanical characterization tests

[1] C.-J. Haecker et al. / Cement and Concrete Research 35 (2005) 1948 - 1960

[2] Coulais et al. / Physical Reviews Letters (2015) 115, 044301

ARCHITECTED MATERIALS AND

ADDITIVE MANUFACTURING LAB

[3] Manan et al. / Journal of Engineering Materials and Technology (2021) 143, 041006-3

Crack propagation mechanism in tri-layer hard-soft-hard composite

Effect of thickness on overall performance

Hardened cement-PVS composite shows significant increase in toughness vs. monolithic

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Framework predictions

Framework predictions

Conclusions

- A unified framework coupling large deformation phase-field and PPR CZM was developed to explore crack growth in hard-hard and hard-soft multi-material systems
- The framework can capture crack deflection and crack penetration in hard-hard composites containing weak interfaces in accordance with predictions of Linear Elastic Fracture Mechanics (LEFM)
- The framework captures an emergent crack growth mechanism in hard-soft (Cement-PVS) composites: crack bridging by the soft layer

Thank you for your attention! Questions?

