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[1] Jin et al., Sci. Adv. 8, eabq3248 (2022)
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Hypothesis: hard-soft multi-materials enhance mechanical performance
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How do we numerically investigate fracture in hard-
soft multi-material assemblies to better understand 

the toughening mechanisms involved in their 
response to fracture?
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𝑦

𝑑(𝑥) ≔ ቊ
1, 𝑥 = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑑
1

≡ auxiliary field variable,

𝑑 ∈ [0,1]

𝑥

𝑑 𝑥 = 𝑒
− 𝑥

𝑙𝑐

1

2𝑙𝑐 

Length-scale

𝑥

𝑦

𝑑 0 = 1

𝑑 ±∞ = 0
satisfying

𝒮

𝐿 = [−∞, ∞]

𝑥

𝑥 = 0

ℬ = Γ ×  𝐿 

Regularizing non-smooth sharp 

crack with a diffuse crack 

topology

Phase-field approach 

for modeling fracture

How do we numerically investigate fracture in such composite materials?
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Regularize the sharp crack topology by a limited diffuse damage band

A time-dependent phase-field damage variable 𝑑 𝐗, 𝑡 ∈ 0,1  is introduced where 𝑑 = 0 indicates no fracture and 

𝑑 = 1 indicates complete fracture

𝛹 𝒮0 = න
𝒮0

𝐺𝑐 dA 𝐺𝑐: Fracture energy 𝛾: crack surface density function

𝛾(𝑑, ∇𝑑) =
1

𝑐𝛼

1

𝑙𝑐
𝛼 𝑑 + 𝑙𝑐 ∇𝑑 2

𝑐𝛼 = 4 න
0

1

𝛼 𝛽  𝑑𝛽 = ൞
2, 𝛼 𝑑 = 𝑑2

8

3
, 𝛼 𝑑 = 𝑑

where
AT2

AT1

𝑙𝑐: length scale

≈ න
𝛺0

𝐺𝑐 𝛾(𝑑, ∇𝑑)d𝑉
Crack 

surface 

energy

𝒮0: sharp crack topology

ℬ: diffuse damage band

Phase-field captures crack propagation through regularization of sharp crack topology
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Phase-field captures crack propagation through regularization of sharp crack topology

𝐮 𝐱 , 𝑑 𝐱 = Arg{min Π(𝐮, 𝑑)} subject to ሶ𝑑 𝐱 > 0, 𝑑 𝐱 ∈ 0,1 , 𝐱 ∈ ℝ𝑛, 𝑛 = 1,2,3

𝐮: displacement field

𝐅 = ∇𝛘 𝐗, 𝑡 = 𝐈 + ∇𝐮 

deformation gradient

Π(𝐮, 𝑑) = ඳ

𝛺0

𝑔 𝑑 𝜓0 𝐅 𝑑𝑉 + න
𝛺0

𝐺𝑐 𝛾 𝑑, ∇𝑑 d𝑉 − 

𝛺0

𝒃𝟎 ⋅ 𝐮d𝑉 + න
Γ0

𝐭𝟎 ⋅ 𝐮d𝐴

total potential

strain energy

crack surface energy
external energy

𝑔 𝑑 = 1 − d 2: degradation function

Kinematics

Total potential energy of the system

Variational principle

7

Body forces Applied tractionStrain energy density
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Updated crack surface energy

න
𝛺0

𝐺𝑐 
𝑏𝛾 𝑑, ∇𝑑 d𝑉 + න

𝛤0

𝐺𝑖dA

InterfaceBulk

𝐺𝑐
𝑏: fracture energy of the bulk material

𝐺𝑖: fracture energy dissipated at the interface

Updated total potential energy of the system

Π(𝐮, 𝑑) = ඳ

𝛺0

𝑔 𝑑 𝜓0 𝐅 𝑑𝑉 + න
𝛺0

𝐺𝑐 
𝑏𝛾 𝑑, ∇𝑑 d𝑉 + න

𝛤0

Δ𝐮 T𝐓 dA − 

𝛺0

𝒃𝟎 ⋅ 𝐮d𝑉 + න
Γ0

𝐭𝟎 ⋅ 𝐮d𝐴

total potential

crack surface energy
external energy

Body forces Applied tractionStrain energy density

strain energy

Displacement 

field

Phase-

field
CZM

InterfaceBulk

න
𝛤0

𝐺𝑖dA

= න
𝛤0

Δ𝐮 T𝐓dA

Phase 

field d

ℬ 

𝒖 = ഥ𝒖 𝜕Ω𝑢on

𝜕Ω𝑡on

Ω0
1: Bulk-A

Γ0(PPR CZM)

Ω0
2: 

Bulk-B

𝛤0: Interface – modeled by PPR CZM

ℬ: smeared crack – modeled by Phase-field

𝒕𝟎

Δ𝐮 = 𝐮𝟏 − 𝐮𝟐 displacement jump vector

𝒎

Contribution of interface to the crack surface energy can be accounted for separately 
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𝜙 Δ𝐮𝑛, Δ𝐮𝑡 = min 𝐺𝑐
𝑖𝑛𝑡

𝑛
, 𝐺𝑐

𝑖𝑛𝑡
𝑡

+ Γ𝑛 1 −
Δ𝐮𝑛

𝛿𝑛

𝛼
𝑚

𝛼
+

Δ𝐮𝑛

𝛿𝑛

𝑚

+ 𝐺𝑐
𝑖𝑛𝑡

𝑛
− 𝐺𝑐

𝑖𝑛𝑡
𝑡

x Γ𝑡 1 −
|Δ𝐮𝑡|

𝛿𝑡

𝛽
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛

+ 𝐺𝑐
𝑖𝑛𝑡

𝑡
− 𝐺𝑐

𝑖𝑛𝑡
𝑛

𝐺𝑐
𝑖𝑛𝑡

𝑛
, 𝐺𝑐

𝑖𝑛𝑡
𝑡
: Energies for mode I and mode II fracture, respectively

Γ𝑛 , Γ𝑡:  Energy constants 

Δ𝐮𝑛, Δ𝐮𝑡: Normal and tangential components of the displacement jump

𝛿𝑛, 𝛿𝑡:  Final crack openings representing complete failure in the normal and tangential directions, respectively

𝛼, 𝛽: shape parameters

𝑇𝑛 Δ𝐮𝑛, Δ𝐮𝑡 =
Γ𝑛

𝛿𝑛
𝑚 1 −

Δ𝐮𝑛

𝛿𝑛

𝛼
𝑚

𝛼
+

Δ𝐮n

𝛿𝑛

𝑚−1

− 𝛼 1 −
Δ𝐮𝑛

𝛿𝑛

𝛼−1
𝑚

𝛼
+

Δ𝐮𝑛

𝛿𝑛

𝑚

x

Γ𝑡 1 −
|Δ𝐮𝑡|

𝛿𝑡

𝛽
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛

+ 𝐺𝑐
𝑖𝑛𝑡

𝑡
− 𝐺𝑐

𝑖𝑛𝑡
𝑛

𝑇𝑡 Δ𝐮𝑛, Δ𝐮𝑡  =
Γ𝑡

𝛿𝑡
𝑛 1 −

|Δ𝐮𝑡|

𝛿𝑡

𝛽
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛−1

− 𝛽 1 −
|Δ𝐮𝑡|

𝛿𝑡

𝛽−1
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛

x Γ𝑛 1 −
Δ𝐮𝑛

𝛿𝑛

𝛼
𝑚

𝛼
+

Δ𝐮𝑛

𝛿𝑛

𝑚

+ 𝐺𝑐
𝑖𝑛𝑡

𝑡
− 𝐺𝑐

𝑖𝑛𝑡
𝑛

Δ𝐮𝑡

Δ𝐮𝑡
 

න
𝛤0

𝐺𝑖dA = න
𝛤0

Δ𝐮  T 𝐓 dA

Updated crack surface energy

where 𝐓 = (𝑇𝑛, 𝑇𝑡)andΔ𝐮 = 𝐮𝟏 − 𝐮𝟐

• Normal traction force

• Tangential traction force

Displacement jump Traction force vector

[1] K. Park et al. / J. Mech. Phys. Solids 57 (2009) 891–90

User-

Element 

Subroutine 

(UEL) for 

Abaqus

𝑇𝑛 δ𝑛𝑐 , 0 = 𝜎𝑚𝑎𝑥

𝑇𝑡 0, δ𝑡𝑐 = 𝜏𝑚𝑎𝑥

Park-Paulino-Roesler (PPR) [1] was used to capture dissipated energy at interfacial zones
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Case I: hard-hard bi-layer composite with 

interface perpendicular to initial notch direction  
Case II: solid with crack impinging on an 

incline interface 

initial 

notch

1
m

m

𝒖

𝒖

Material A Material B

0.5mm 0.5mm

𝜃𝑖𝑛𝑡 = 60°
initial 

notch

1
m

m

1mm

in
te

rf
a
c
e

𝒖

𝒖

Crack propagation was investigated for four cases of hard-hard and hard-soft composites
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Hard 

material

Soft 

material

1
m

m

𝒖

1mm

0.5mm

Interface

Matrix

Fiber

7.5 

mm

𝒖

7.5m

m

15

mm

7.5 

mm

Initial 

notch

𝒖

9
0
m

m

In
te

rf
a

c
e

In
te

rf
a

c
e

Case III: hard-soft-hard tri-layer composite with 

interface perpendicular to initial notch direction  
Case IV: fiber-reinforced matrix composite

Crack propagation was investigated for four cases of hard-hard and hard-soft composites
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Crack 

Deflection

Crack 

penetration

OR

initial 

crack

1
m

m

𝒖

𝒖

Material A Material B

0.5mm 0.5mm

in
te

rf
a
c
e

Material A Material B

Material A Material B

LEFM shows two predominant crack growth mechanisms in hard-hard bi-layer materials
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𝑔𝑐
𝑖𝑛𝑡

𝑔𝑐
𝐵 :

𝛼: Parameter characterizing elastic mismatch of bi-material system [1] 

Ratio between the fracture energy of the interface and the fracture energy of bulk Material B [1]

0

0.5

1

1.5

-1 -0.5 0 0.5 1

Penetration

Deflection

𝑔𝑐
𝑖𝑛𝑡

𝑔𝑐
𝐵

𝛼 =
𝐸𝐵

∗ − 𝐸𝐴
∗

𝐸𝐵
∗ + 𝐸𝐴

∗

𝐸∗: Plane strain 

Young’s Modulus

A B

A B

He and Hutchinson / Int. J. Solids Structures 29 (1989) 63-191

Crack propagation mode depends on material and interfacial fracture properties

[1] He and Hutchinson / Int. J. Solids Structures 29 (1989) 63-191
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Crack 

Deflection

Crack 

penetration

OR

initial 

crack

1
m

m

𝒖

𝒖

Material A Material B

0.5mm 0.5mm

in
te

rf
a
c
e

Material A Material B

Material A Material B

LEFM shows two predominant crack growth mechanisms in hard-hard bi-layer materials
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Crack 

Deflection

Crack 

penetration

OR

initial 

crack

1
m

m

𝒖

𝒖

Material A Material B

0.5mm 0.5mm

in
te

rf
a
c
e

Material A Material B

Material A Material B

Crack penetration
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initial 

crack

1
m

m

𝒖

𝒖

Material A Material B

0.5mm 0.5mm

in
te

rf
a
c
e

Interface:

Zero-thickness cohesive 

elements

Bulk:

Plane-strain four-node 

quadrilateral elements

Zero-thickness cohesive elements used for interface - 4-node quadrilateral plane strain elements used for bulk



17
17

Vertical Disp. 

(mm)

initial 

crack

in
te

rf
a
c
e

Phase-

field

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘 = 1, 𝛼 = 0.5 

0

0.5

1

1.5

-1 -0.5 0 0.5 1

𝛼

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘

𝛼

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘

Penetration

Simulation predictions
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Crack 

Deflection

Crack 

penetration

OR

initial 

crack

1
m

m

𝒖

𝒖

Material A Material B

0.5mm 0.5mm

in
te

rf
a
c
e

Material A Material B

Material A Material B

Crack deflection



19
19

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘 = 0.2, 𝛼 = 0.5 

0

0.5

1

1.5

-1 -0.5 0 0.5 1

𝛼

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘

𝛼

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘

Deflection

Phase-field
Vertical Disp. 

(mm)

initial 

crack

in
te

rf
a
c
e

Simulation predictions
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0

100

200

300

0.00% 0.05% 0.10% 0.15%

F
o
rc

e
 (

N
)

Displacement (10
-2

 mm)

Deflection

Penetration

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘 = 0.2 

𝛼 = 0.5 

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘 = 1 

𝛼 = 0.5 

PenetrationDeflection

Overall enhanced performance for the case when crack deflects 
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𝜃𝑖𝑛𝑡 = 60°
initial 

crack

1
m

m

1mm

𝒖

𝒖

Interface:

Zero-thickness cohesive 

elements

Bulk:

Plane-strain four-node 

quadrilateral elements

Crack impinging on an inclined interface
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𝐺
𝑐𝑖𝑛

𝑡

𝐺
𝑐𝑏

𝑢
𝑙𝑘

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

𝜃𝑖𝑛𝑡

Penetration

Deflection

LEFM theory for the case of a crack impinging on an inclined interface [1]

[1] He and Hutchinson / Int. J. Solids Structures 29 (1989) 63-191
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Phase-field

Vertical 

Disp. (mm)
Vertical Disp. 

(mm)

initial 

crack

initial 

crack

Phase-field

(i)(ii)

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘 = 1

𝐺𝑐
𝑖𝑛𝑡

𝐺𝑐
𝑏𝑢𝑙𝑘 = 0.2

Framework predictions
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Stress 𝑆22(MPa)

Phase-field

(i)

(ii) (iii) (iv)

(i)

(ii) (iii) (iv)

0

10

20

30

40

50

60

0.00% 0.01% 0.02% 0.03% 0.04%

F
o
rc

e
 (

N
)

Displacement (10
-2

 mm)

(i) (iv)

(ii)

(iii)

Crack deflection
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0
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40

50

60

0.00% 0.01% 0.02% 0.03% 0.04%

F
o
rc

e
 (

N
)

Displacement (10
-2

mm)

(i)

(ii)

(iii)
(iv)

(v)
interface

Phase-field

(i)

(ii)

(iii)

(iv)

(v)

Interface separation is captured
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0
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0.00% 0.01% 0.02%

F
o
rc

e
 (

N
)
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(i)

(i)

(ii) (iii) (iv)

(i)

(ii) (iii)(iii) (iv)

(iv)

(ii)

(iii)Stress 𝑆22(MPa)

Phase-field

Crack penetration
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Hard 

material

Soft 

material

1
m

m

𝒖

1mm

0.5mm

Interface

Matrix

Fiber

7.5 

mm

𝒖

7.5m

m

15

mm

7.5 

mm

Initial 

Crack

𝒖

9
0
m

m

In
te

rf
a

c
e

In
te

rf
a

c
e

Case III: hard-soft-hard tri-layer composite with 

interface perpendicular to initial notch direction  
Case IV: fiber-reinforced matrix composite
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Interfaces:

Zero-thickness 

cohesive elements

Bulk:

Plane-strain four-node 

quadrilateral elements

Hard 

material

Soft 

material

7.5 

mm

𝒖

7.5

mm

15

mm

7.5 

mm

Initial 

Crack

𝒖

9
0
m

m

In
te

rf
a

c
e

In
te

rf
a

c
e

Zero-thickness cohesive elements used for interface - 4-node quadrilateral plane strain elements used for bulk
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[1] C.-J. Haecker et al. / Cement and Concrete Research 35 (2005) 1948 – 1960 

[2] Coulais et al. / Physical Reviews Letters (2015) 115, 044301

[3] Manan et al. / Journal of Engineering Materials and Technology (2021) 143, 041006-3

Hard 
material

Soft 
material

7.5 
mm

𝒖

7.5
mm

15
mm

7.5 
mm

Initial 
Crack

𝒖

9
0
m

m

In
te

rf
a
c
e

In
te

rf
a
c
e

Material properties were determined using specific mechanical characterization tests
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Stress 𝑆22 (MPa)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

0

20

40

60

0 0.01 0.02 0.03

F
o
rc

e
 (

N
)

Displacement (mm)

(i)

(ii)

(iii)

(iv)

(v)

Phase-field

Crack propagation mechanism in tri-layer hard-soft-hard composite
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(i)

(ii)

(i) (ii)

Phase-field

Vertical Disp. 

(mm)

7.5mm 3.75mm 1.875mm 0.3mm 0.15mm

Interface

Crack Bridging

PVS Layer

Effect of thickness on overall performance



32
32

Composite 

Hardened Cement 

Paste-PVS

Monolithic 

Hardened 

Cement Paste

Phase-field

0

20

40

60

80

0 0.01 0.02 0.03

F
o
rc

e
 (

N
)

Displacement (mm)

Composite

Monolithic

Hardened cement-PVS composite shows significant increase in toughness vs. monolithic
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Case I: hard-hard bi-layer composite  Case II: hard-soft-hard tri-layer composite

To illustrate the capability of the framework in capturing 

deflection and penetration
To examine toughening mechanisms achieved by 

exploiting compliancy of soft material

Hard 

material
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material
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m

𝒖

1mm

0.5mm

Interface

Matrix
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7.5 
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𝒖
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m
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7.5 
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Crack

𝒖

9
0
m

m
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c
e

In
te
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a

c
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1
m

m

𝒖

1mm

0.5mm

Interface

Matrix

Fiber

Interface

zero-thickness cohesive 

elements

Bulk

four-node 

quadrilateral 

elements

Zero-thickness cohesive elements used for interface - 4-node quadrilateral plane strain elements used for bulk
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interfacial 

debonding

𝜃𝑖𝑛𝑡 ≈ 64°

Stress 𝑆22 (MPa)

(i) (ii)

(iii) (iv)

Phase-field

𝜃𝑖𝑛𝑡 ≈ 64°

(i) (ii)

(iii) (iv)

Framework predictions
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Phase-field

𝜃𝑖𝑛𝑡 ≈ 64°

(i) (ii)

(iii) (iv)
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20

40

60

0 0.01 0.02

F
o
rc

e
 (

N
)

Displacement (mm)

(i)

(iv)

(ii)

(iii)

Framework predictions
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• A unified framework coupling large deformation 

phase-field and PPR CZM was developed to 

explore crack growth in hard-hard and hard-soft 

multi-material systems

• The framework can capture crack deflection 

and crack penetration in hard-hard composites 

containing weak interfaces in accordance with 

predictions of Linear Elastic Fracture 

Mechanics (LEFM)

• The framework captures an emergent crack 

growth mechanism in hard-soft (Cement-PVS) 

composites: crack bridging by the soft layer
Crack Bridging

Crack Penetration Crack Deflection

Conclusions
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Thank you for your attention! Questions?
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