# Low-cost Accelerator and Strength Enhancer for Cement Mortar Produced by Regulating the Carbonation of Lime Slurry

Presenter: Madeline Owens

Co-authors: Christie Arrington, Sofia Palonen, Monica Amaral, and Jialai Wang

Department of Civil, Construction, and Environmental Engineering The University of Alabama, Tuscaloosa

> ACI Fall Convention – Philadelphia, PA November 2024







American Concrete Institute

## **Problem Statement**

Concrete is the **most used** construction material  $\rightarrow$  14 billion m<sup>3</sup>/year \$440 billion/year



Global CO<sub>2</sub> emissions per sector

Concrete has a **carbon problem** 

- Production of 1 lb cement  $\approx 0.9$  lb of CO<sub>2</sub>
- Cement industry is responsible for 8% of global emissions caused by humans

Concrete production is **wasteful** 

- 6% waste concrete (24 million yd<sup>3</sup>/year)
- 191 lb/yd<sup>3</sup> washing water
- \$4 billion missed opportunity!

### **Concrete as CO<sub>2</sub> sink**

The massive volume of concrete used in construction offers one of the **largest** sinks for  $CO_2$ 

CO<sub>2</sub> precipitates as CaCO<sub>3</sub> once in contact with calcium present in both

- Cement clinker alite  $(C_3S)$  and belite  $(C_2S)$
- Hydration products calcium hydroxide (CH) and calcium silicate hydrate (C-S-H)

$$\operatorname{Ca}_{(\operatorname{aq})}^{2+} + \operatorname{CO}_{3(\operatorname{aq})}^{2-} \to \operatorname{CaCO}_{3(\operatorname{s})}$$

 $CaCO_3$  is incorporated into the matrix

• Permanent storage of CO<sub>2</sub> in concrete



## Utilizing CO<sub>2</sub> in Concretes

### **Carbonation Curing**

 Replacing water/steam with purified CO<sub>2</sub> for curing after concrete mixing

Improved strength at early-age

- Limited applicability
  - → Small members like concrete blocks
  - → Precast (chamber required)





## Utilizing CO<sub>2</sub> in Concretes



#### Mixing Carbonation

Injecting purified CO<sub>2</sub> during concrete mixing

Precast and ready mix

Some  $CO_2$  released back to air

Strength improvement (5 – 8% cement saved)

0.15 - 0.2% wt. of cement in CO<sub>2</sub> storage



## New Pathway: The BioCarb Method



Carbonation before mixing

5 to 50% of cement is added into the total mixing water

Low dosage of a biomolecule like tannic acid is added

CO<sub>2</sub> gas is bubbled into the slurry for up to 60 minutes



## **Working Mechanism**

### NanoCaCO<sub>3</sub> is produced in-situ

- Filler effect
- Seeding effect

### Multi-functional biomolecule

- Regulate the crystal nucleation, orientation, size, and phase
- Disperse the produced CaCO<sub>3</sub> nanoparticles
- Refine final microstructure
- Possible formation of C-S-H-CaCO<sub>3</sub> composites like scawtite and tilleyite







## CO<sub>2</sub> Uptake



•  $CO_2$  Uptake after 60 min = 7.45% (**30x better** than the existing technology)

CRFTF

- Carbonation duration depends on the added biomolecule
  - 30 60 min is sufficient for most applications

## **Strength Improvement**



Water : Cement : Sand = 1:2:5

Production: half of cement mixed with all mixing water and carbonated with a biomolecule as a small dose additive

Over 25% strength improvement

Over 20% reduction on carbon intensity



## **Slaked Lime as an Alternative Calcium Source**

- Slaked lime production is less energy-intensive than cement
  ≈ 900 °C required v. 1450 °C
- More expensive than cement only because of production scale
- Slaked lime is carbonated replacing 5% of OPC
- The carbonated slaked lime becomes a low-cost accelerator
- Ideal for quick turnover required by pre-cast industry



## **Experimental Plan**

- $\rightarrow$  Slaked lime was used as the calcium source in the slurry
- $\rightarrow$  Two main factors were analyzed
  - 1. Tannic Acid concentration
  - 2. Carbonation time



## **Early-age Improvement**



By 3 days, strength has reached 95% of control at 28 days

By 7 days, strength has reached or surpassed control at 28 days

No loss on late-age strength ≈ 25% improvement at 28 days



## **Potential Industry Impacts**

Environmental Benefits: Enormous sustainability benefits can be generated if fully deployed:

- In the U.S.
  - Permanently storing 6Mt/year CO<sub>2</sub> in concretes
  - Save 20 Mt/year cement
  - Avoid 18 Mt/year CO<sub>2</sub>
  - Total 24 Mt/year CO<sub>2</sub> emission reduced
- Worldwide,
  - 0.25 Gt/year CO<sub>2</sub> stored in the concrete
  - 2.03 Gt/year CO<sub>2</sub> is avoided every year
  - Total 2.28 Gt/year CO<sub>2</sub> emission reduced



CARBON CAPTURE & SEQUESTRATION



## Conclusions

- BioCarb method can enhance concrete's CO<sub>2</sub> sequestration capacity (30x more than state-of-the-art)
- 2. Early-age improvement is maintained at later age
- 3. Slaked lime is a viable less energy-intensive calcium source
- 4. Slaked lime is a low-cost and sustainable alternative to other nanotechnology accelerators
- 5. BioCarb method enables quick turnover needed by precast industry



# Thank you!



NSF's Convergence Accelerator



Fossil Energy and Carbon Management

National Science Foundation through #1761672, #2236331, #2331381, #2328044, and #2418355

Department of Energy through DE-FE0032263





American Concrete Institute