

Investigation of Mechanical Splices for Titanium Alloy Bars

Mahesh Acharya, Mustafa Mashal Idaho State University

Contact: achamahe@isu.edu

Outline

- Objectives
- Literature
- Experimental ProgramTension Test
- Discussion
- Conclusions

Objectives |

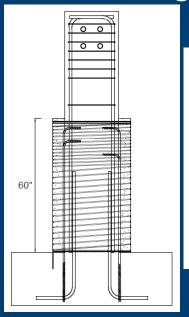
 Review literature on Titanium Alloy Bars (TiABs) in civil engineering industry

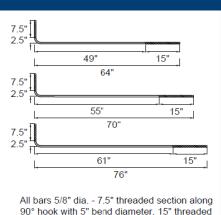
Research

Current use

- Experimental test (i.e., tension test) to identify appropriate mechanical coupler to splice TiABs
- Provide recommendations regarding the use of TiABs

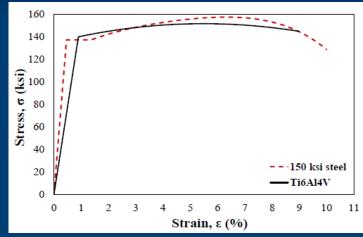
Literature


- New Advanced Materials for Civil Engineering Industry Titanium Alloy
- Widely used Grade of Titanium: Grade 5 (Ti6Al4V)
- Advantages Great corrosion resistance High strength to weight ratio **Flexibility**
 - **Ductility**
- Disadvantage **Expensive material**

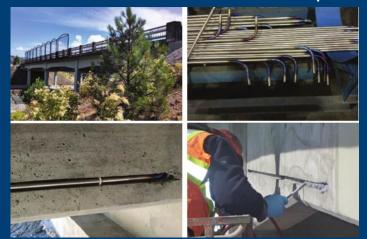


Literature

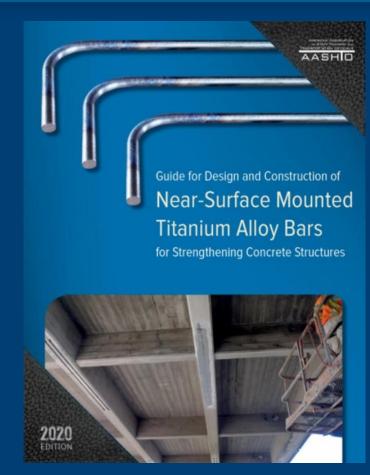
Oregon State University (Retrofitting) (Shrestha et. Al)


Full-scale column specimens:

- 24 in. x 24 in. square columns
- 4-#10 Gr. 60 corner bars
- #3 Gr. 40 square ties @ 12 in.
- 36 in. lap-splice length
- $f'_c = 3,300 \text{ psi}$


- · Improved seismic performance with TiAB retrofit
- Titanium alloy bars (TiABs) provide:
 - High strength with well-defined material properties
 - Greatly improved ductility
 - Environmental durability (corrosion resistance)
 - Ease of fabrication and installation
- Conventional construction methods, economic retrofit solution

Literature

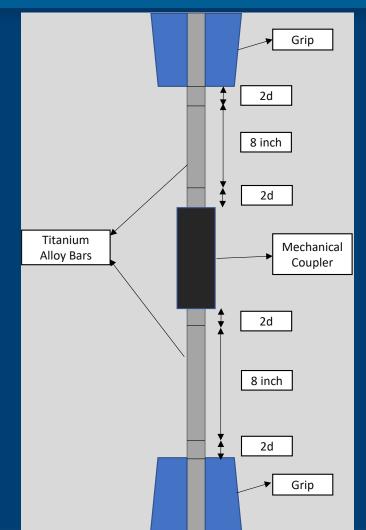

Stress-Strain Plot for Ti6Al4V and 150 ksi Steel Specimen

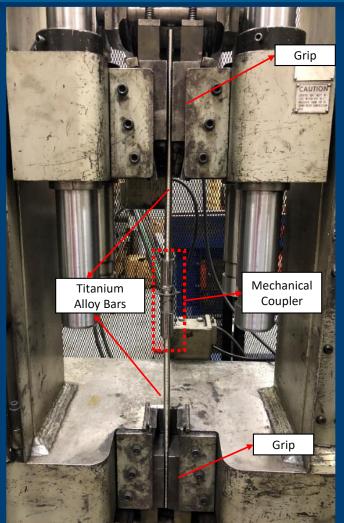
NSM TiABs Technology Used in Mosier Bridge by ODOT

NSM TiABs Technology Used in San Jacinto River
Bridge by TxDOT

1st Edition, AASHTO Publication

- Coupler 'A'
 Uses shear screw to splice bar
 Positive center
 Twist-off-screw
- Coupler 'B'
 Cold swaged steel sleeves
 Installed in-situ w/ overlapping bites
 Gripped using portable presses


Coupler 'C'
 Cold swaged steel sleeves
 Thicker
 Designed for high-strength bars
 Both male and female taper
 threaded coupler components
 maintain full cross-sectional



area of the bar

- ASTM A1034
- Tensile Test

ID	Description		
$\mathbf{D}_{ ext{Initial}}$	Initial diameter of the titanium		
	alloy bars		
$L_{Initial}$	Total length of specimen after		
	installation of the mechanical		
	coupler		
L_{Final}	Final length of each bar after		
	fracture		
\mathbf{D}_{Final}	Diameter of bar at the point of		
	fracture (3 measurements for		
	precision)		

Tension Test Matrix for Couplers

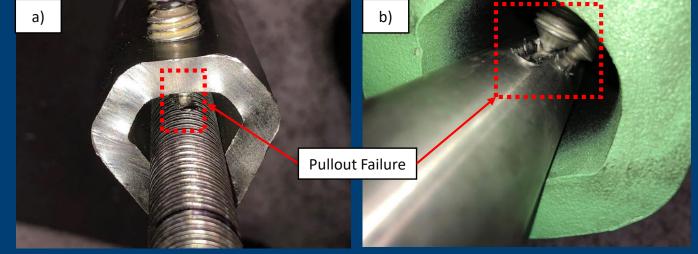
Specimen ID	Diameter of TiABs	Product Code	Number of Tests	Description
Al	0.625 inch	05ZBA	1	Use Coupler 'A' for #5 pseudo-threaded bar
A2	0.750 inch	06ZBA	1	Use Coupler 'A' for #6 pseudo-threaded bar
A3	1.750 inch	14ZBA	1	Use Coupler 'A' for #14 smooth bar
B1	0.625 inch	05XL	1	Use Coupler 'B' for #5 pseudo-threaded bar
B2	0.750 inch	06XL	1	Use Coupler 'B' for #6 pseudo-threaded bar
C1, C2, C3	0.625 inch	XT05F and XT05M	3	Use Coupler 'C' on #5 bar
C4, C5, C6	0.750 inch	XT06F and XT06M	3	Use Coupler 'C' on #6 bar

- #5 Bar, #6 Bar and #14 Bar
- % Change in Diameter

A1: 0.46%

A2: 1.6%

A3: 0%


% Change in Length

A1: 1.0%

A2: 2.2%

A3: 1.0%

Specimen	Diameter of TiABs	Max Load (lb.)	Stress Value (psi)	Failure Mode
A1	0.625	44,040	142,065	Pullout
A2	0.750	58,020	131,864	Pullout
A3	1.500	160,485	90,823	Pullout

A1 Specimen

A3 Specimen

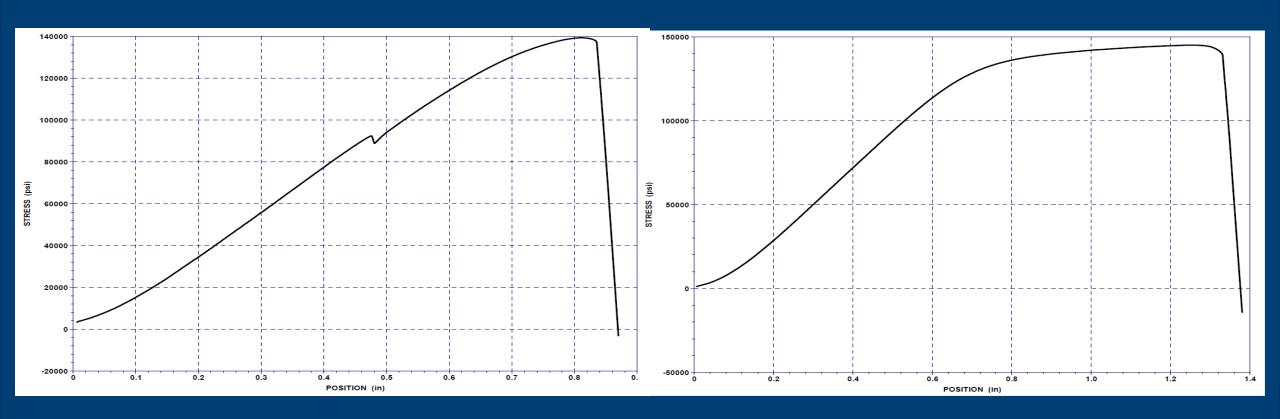
- #5 Bar, and #6 Bar
- % Change in Diameter

B1: 0.2%

B2: 0.4%

% Change in Length

B1: 0.2%


B2: 2.2%

Specimen	Diameter of	Max Load	Stress Value	Failure Mode
	TiABs	(lb.)	(psi)	
B1	0.625	43,190	139,323	Coupler Fracture
B2	0.750	63,860	145,136	Coupler Fracture

- Not able to withstand full tensile capacity of bar
- Successfully gripped the bar
- Failure in middle of bar

B1 Specimen

B2 Specimen

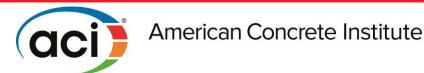
- #5 Bar, and #6 Bar
- % Change in Diameter

C1 and C3: 8.3%

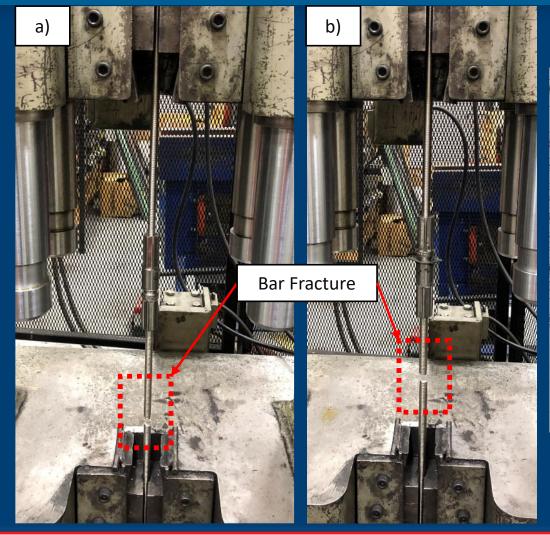
C2: 1%

C4, C5 and C6: 9%

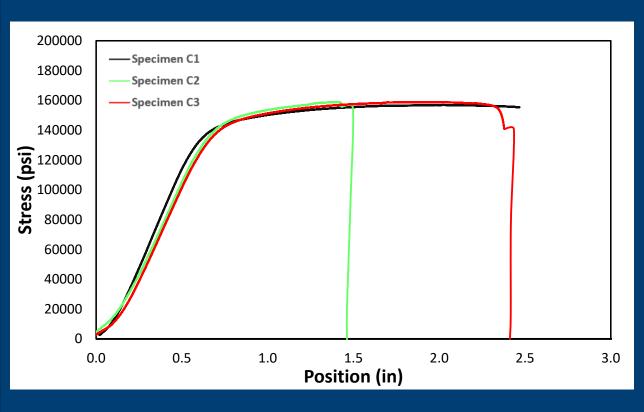
% Change in Length

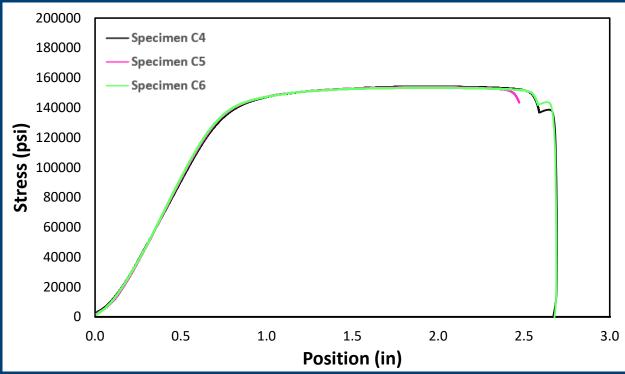

C1 and C3: 3%

C2: 1.2%


C4, C5 and C6: 3.1%

Specimen	Diameter of	Max Load	Stress Value	Failure Mode
	TiABs	(lb.)	(psi)	
C1	0.625	48,680	157,035	Bar Break
C2	0.625	49,260	158,917	Thread Strip
C3	0.625	49,270	158,950	Bar Break
C4	0.750	67,840	154,187	Bar Break
C5	0.750	67,660	153,776	Bar Break
C6	0.750	67,490	153,393	Bar Break


- All specimen except C2 had bar fracture
- Failure away from splice area
- Thread strip failure indicates that test pushed coupler material near its limit
- All other tests bar break



- Appropriate and acceptable for splicing pseudo-threaded TiABs
- AASHTO LRFD-Specimens should achieve > 125% of yield strength of the bar (Only 120% achieved) – This is acceptable
- Normal steel used to make coupler material goes to strain hardening.
 TiABs and Steel has different strain hardening
- TiABs do not carry large overstrength (strain hardening) factor compared with normal or high-strength rebars
- TiABs have an elastic-perfectly plastic type of behavior under tensile loads. Overstrength factor is generally about 1.1 compared with 1.5 or similar for normal rebars

Conclusions

- To keep the quantity of TiABs limited (because of higher cost), tensile tests on spliced TiABs were performed to identify and explore suitability of some available splicing systems for TiABs
- Coupler 'C' (uses cold swaged steel sleeve and is thicker) produced by Producer 'X' seemed to be appropriate mechanical coupler for splicing pseudo-threaded TiABs because testing was successful in pushing failure away from splice.
- Results of testing show that TiABs have good potential for applications in civil infrastructure. But, further investigation into the use of TiABs in concrete is still needed.

Acknowledgements

- Idaho State University
- Idaho State Board of Education
- Perryman Company, PA
- BarSplice Products, Inc., OH
- Premier Technology, Inc., ID

Thank you

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

Mahesh Acharya, Mustafa Mashal Idaho State University

Contact: achamahe@isu.edu, mashmust@isu.edu

