April 3rd – 4th, 2023 ACI Spring Convention, San Francisco

ACI / JCI – 6th Joint Seminar on Advancing the Design of Concrete Structures

Session 3 Design for Seismic Performance

New design codes for foundation members considering their ultimate conditions

Sam Kono (Tokyo Institute of Technology)

Seismic design for buildings in Japan

- 1st level design (Intermediate EQ)
 - Allowable stress design for Cb=0.2

(Cb:Base shear coefficient)

- 2nd level design (Severe EQ)
 - Lateral load carrying capacity check for Cb=0.3 (MRF) ~0.55 (Wall)

- Superstructure: [1st + 2nd] is required
- Foundation: Only [1st] is required.

Sam Kono at Tokyo Tech

Lessons from 1995 Kobe EQ

Severe damage occurred to soft stories

 Soft story needs strength/stiffness

- Damage occurred due to torsion^{*}
 - Some members need large drift capacity

Lessons from 2011 Tohoku EQ

Large scale EQ Typical Damages +Tsunami

Courtesy: Dr. T. Mukai (BRI)

Lessons from 2011 Tohoku EQ

Resiliency can be severely hampered even from a single factor.

- RC non-structural walls
- Roof support at gymnasiums (schools for refugee camp)
- Concrete piles

Lessons from 2016 Kumamoto EQ

- Safety is still the most critical issue.
- The society wants to use its buildings continuously after EQ's without losing any building functions.
 - Intermediate or severe damage to structural and non-structural elements cannot be accepted anymore.

Damage due to severe earthquakes Resiliency of foundations

Damage to piles (2016 Kumamoto EQ)

Buildings following the current standard were demolished due to pile damage.

5-story apartment (1984) Minor damage to superstructure Demolished after evacuation

ΓΟΚΥΟ ŤΕCH

Pile related code/events 1981 Building code Superstructure:

allowable +load carrying capacity Piles:

No regulations

1984 ASD(recommended)

1995 Kobe EQ. (safety check for severe EQ recommended)

2001 ASD (mandatory) 2017 Mn for some piles

3-story municipal office (1980 +Retrofit 2012) Intermediate damage to the superstructure Demolished after a few months of use

Timber piles

Sam Kono at Tokyo Tech

and found in 1924 after 1923 Kanto EQ. https://japep.or.jp/history01/

Timber piles

Pine piles had supported an 8-story r/c building for 80 years. 東京駅前丸の内ビル(8 story) 1923 - 2002 https://japep.or.jp/history01/ 11

Sam Kono at Tokyo Tech

Steel piles

Sam Kono at Tokyo Tech

The first steel piles had a solid circular section used for a bridge in Osaka (1908). The section changed to H(wide flange) and hollow circular section. 1908年大阪高麗橋の棒鋼杭が最初.その後, H形鋼杭から鋼管杭へ https://japep.or.jp/history01/

Typical concrete piles

f'c=105MPa, Hollow section, D/ts=60~100, D=300~1200mm PT tendons (single wire), fy=1275MPa Mild long. rebars, fy \geq 345MPa Steel tube, fy=235MPa or 325MPa

PHC / PRC pile

CFST pile

Cast-in-place concrete piles

 RC/CFST

f'c=30-50MPa, Solid section, D/ts=100~200, D=700~2500mm Mild long. rebars, fy \geq 345MPa Steel tube, fy=235MPa or 325MPa

TOKYO TECH

Different piles have different pile caps.

Precast concrete pile

Concrete piles 1910: On-site precast piles with square section 1934: Centrifugal r/c concrete piles 1967: Centrifugal prestressed concrete piles (Tokyo metro. expressway) 1970: Centrifugal prestressed high-strength concrete piles (PHC pile) 1980s:Precast CFST piles

https://japep.or.jp/history01/

Sam Kono at Tokyo Tech

Precast concrete piles

f'c=105MPa, Hollow section, D/ts=60~100, D=300~1200mm PT tendons (single wire), fy=1275MPa Mild rebars, fy≧345MPa Steel tube, fy=235MPa or 325MPa

PHC piles (prestressed) PRC piles (PHC + mild rebars) Precast CFST piles (no rebars/tendons)

Flexural behavior of precast piles

такүа тесн

Test variables

Type and N/No

Bending behavior under tensile or high compressive force was examined. M- ϕ was simulated with fiber analysis.

oading system in

No. of Concession, Name

1

18

Tit

PHC (D=400mm)

19

PHC (D=400mm)

 ∇

PHC (D=400mm)

North

Sam Kono at Tokyo Tech

 $\mathbf{\nabla}$

21

PRC (D=400mm)

PRC (D=400mm)

Sam Kono at Tokyo Tech

25

CFST piles

Sam Kono at Tokyo Tech

ΤΟΚΥΟ ΤΕΕΗ

M_{max}/M_{cal} for precast CFST piles

28

Cast-in-place CFST piles

f'c=30-40MPa, Solid section, D/ts=100~200, D=700~2700mm

TOKYO TECH

Φ1200mm CFST pile ts=9.6mm, f'c=30MPa,fy=430MPa

Specimen 2010

Internal ribs of steel tube (Φ =1200mm)

Sam Kono at Tokyo Tech

Placing reinforcement cage in a steel tube

Cast-in-place CFST piles

M_{max}/M_{cal} for Cast-in-place CFST

(1200mm≧D≧300mm)

TOKYO TECH Pursuing Excellence

TOKYO TECH

M

Summary on Flexural behavior

- PHC/PRC piles
 - The failure mode is extremely brittle and no inelastic deformation is expected.
 - They did NOT sustain axial load at the ultimate state.
- Precast/cast-in-place CFST piles
 - Failure is governed by buckling/fracture of steel tube.
 - Precast CFST piles did NOT sustain axial load at the ultimate state when N/No≧0.3.
 - Cast-in-place CFST piles DID sustain axial load at the ultimate state.
- RC piles
 - Failure is governed by the crushing of concrete.
 - <u>RC piles did NOT</u> sustain axial load at the ultimate state when <u>N/N0≧0.4.</u>

Shear behavior of precast piles

Summary on shear behavior

PHC/PRC

Axial splitting cracking should be taken care of.

The failure mode is brittle. Axial load carrying capacity was partially/completely lost.

- Precast/cast-in-place CFST
 - Shear failure takes place only for small M/Qd and large axial force.

Shear/Flexure at connection

Column-beam-pile connection (tested in sideways) (large scale)

Column-beam-pile connection (smaller scale)

Flexure at pile cap

Pile and pile cap (inverted specimen)

Conclusions

- · Series of tests have been conducted to study flexure and shear behavior.
 - for pile caps
 - for piles
 - · precast spun concrete piles PHC/PRC/CFST
 - · cast-in-place reinforced concrete piles
 - cast-in-place CFST piles
- Design procedures for flexure and shear have been assessed/revised and some of them are reflected in 2022 AIJ guidelines for foundation members.

Pile type	Design issue	2017 AIJ guidelines	Test
RC (cast−in− place)	 •Mmax and Vmax •Ru 	•N/No -0.05~1/3 •Ru = 1/100	 → -0.1~0.6 → Ru for axial load carrying limit
CFST (cast-in- place)	•Mmax •Ru •D/ts	 N/No -0.07~0.15 Eq. has not been not confirmed D/ts<100 	→ -0.3~0.55 → Eq. is shown → D/ts<133
РНС	•Mmax and Vmax	•N/No 0~0.3	→ -0.05 ~ 0.4
PRC	•Mmax and Vmax •Ru	•N/No 0~0.05 •Eq. has not been not confirmed	 → -0.25~0.4 → Ru for axial load carrying limit
SC	∙Mmax ∙Ru	no description no description	→ N/No=-0.1~0.5 → Eq. is shown

(a) Opening T

杭

(b) Criss-cross Stress conditions of pile cap

杭

(c) Closing T

4

Chap. 9: Pile cap for precast concrete piles (既製杭のパイルキャップ)

p.327,330

10.1 Scope

Chap. 11: Foundation beams (基礎梁)

11.1 Scope

Rebar ratio, curtailment, anchorage

Fig 11.2 Curtailment of long. rebars of foundation beams

Thank you.

