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Machine Learning (Black 

box)
• Multi-target regression model

• Artificial neural network (Deep 

neural network)

Glass-Box Machine 

Learning
• generalized additive model 

(GAM)

• New feature generation

• Material rule-learning

Length scale

0.001 m ~10 m1 m

Diverse Data-Driven Approaches to RC Structures

• From millimeters to meters
• From black-box learning to glass-box learning

City scale

Physics-Ingrained Features and 

Information Convolutions

Hidden Rule-Learning by Bayesian 

Evolution Algorithm

Limitation of Black Box

• The limited description of the 

internal complexity of 

heterogeneous materials and 

diverse boundary conditions 

(BC’s). 

• The lack of interpretability 

when directly applying black-

box ML methods. 
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Glass-box 

learner
Black-box 

learner

Learner

Basic Learning Setting: Overall Sketch

𝐗 ∈ ℝ𝑝 

p-dimensional input vector

𝐘 ∈ ℝ𝑠 

s-dimensional output vector

• Material properties

• Boundary conditions

• Loading conditions

• Static/Dynamic 

• Etc. 

• If s = 1, single-target learning

• If s > 1, multiple-target learning

• Material Rules And Expressions

• Interpretable relationships 

between X and Y
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Local/Microscopic 

Behaviors

[ ~ mm]

Global 

Behaviors

[ ~ m ]

Learner

Basic Learning Setting: Overall Sketch

𝐗 ∈ ℝ𝑝 

p-dimensional input vector

𝐘 ∈ ℝ𝑠 

s-dimensional output vector

• Individual material 

constituents 

• Millimeter length scale 

Possible to micro or 

nano scale

• Global strengths

• Global performance 

measure of structure 

as a whole
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Advanced Statistical Learning

• Parametric model 

     e.g., Linear regression, Multiple regression

• Non-parametric model 

     e.g., generalized additive model (GAM) 

Statistical Learning

Statistical Learning Challenges 

of RC Structures’ Data 

• Complexity 

• Nonlinearity 

• Variability

• High-Dimensional Space

(2D) scatter plot (3D) scatter plot
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Advanced Statistical Learning

For instance, consider a single variable case, 

𝑓 𝑥 = ෍

𝑗=1

𝑞

𝑏𝑗 𝑥 𝛽𝑗 . 

where 𝑏𝑗 is the jth basis function; 𝛽𝑗 are parameters to be estimated from data.

Flexible Basis for f(x)

Generalized Additive Model (GAM) 

• Early works by Hastie and Tibshirani (1986, 1990). 

• GAM is a non-parametric extension of the generalized linear model (GLM)

• Involves a sum of smooth functions:   

𝑔 𝐸(𝑌𝑖) = 𝑓1 𝑥1𝑖 + 𝑓2 𝑥2𝑖 + 𝑓3 𝑥3𝑖 + ⋯
where,

• 𝑔 is a smooth link function

• 𝑓𝑗 is the smooth function of the covariate(s) 𝑥𝑗𝑖. 

• 𝑌𝑖 is a response variable, and 𝑥𝑖  is ith vector of data points comprising multiple variables.
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Advanced Statistical Learning

(Wood, (2006).“Generalized Additive Model An Introduction with R,”. CRC press, Boca Raton, FL.”)

Types of Regression Splines

(2) Thin Plate Regression Splines (TPRS)(1) Cubic Regression Splines (CRS)

• Thin Plate Regression Splines (TPRS) used 

for different covariate numbers and knots free.

• Cubic Plate Regression Splines (CPRS) that 

the knot must select their location, limited to 

one variable.
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Advanced Statistical Learning

GAM Prediction of the global behavior of RC shear walls

Experiment (cited Orakcal and Wallace 2006)
GAM-TPRS and GAM-CRS using up to 10 variables. 

VEEL: high-precision parallel multiscale FEA
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Advanced Statistical Learning

Strengths of Statistical Learning

• Optimal/Efficient Prediction 

      Model Construction

      > How many variables ?

      > Which combinations ?

• High Interpretability

      > Relative importance 

         of variables ?

❖ Program available: mgcv package in R; parallel version Rmpi

❖ For detailed code, program, data, and theory; Song, Cho, Wong, (2020). “An Advanced Statistical Approach 

to Data-Driven Earthquake Engineering”. J. Earthq. Eng.

…
…

…
…
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Multi-Objective Predictive Clustering Trees: Basic Setup

Single Tree 

x1 > 0.3

yes no

x2 > 1.1 x3 < -1010

Root Node

Branch

Leaves

x7 > 123

Ensemble of Many Trees 

……

𝐘 = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖  ×  𝑥𝑖[condition of 𝑥𝑖] Expression

𝐘𝐟𝐢𝐧𝐚𝐥 = average of 𝐘’s from trees
Final 

Prediction

Strength:

• Enable accurate multi-objective predictions

• Obtain expressions of the prediction model

• Efficient uncertainty quantification

• Easy to construct and interpret 
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Multiple Target Regression Model

• For multiple-target global behaviors

Parameterize 

capacity curve 𝐶
as 3rd-degree  

polynomial 

function

𝐶 𝑑; 𝐲 , 𝐲 ∈ ℝ8

Least 

square 

Method 

Construct 

training data

𝐱𝐢, 𝐲𝐢

Input features 

𝐱𝐢 ∈ ℝ32

𝑖 = 1, … , 𝑛

(b) (c) Train and 

predict 𝐲
by

Multiple Target 

Regression 

Model

(d)

4 variables for positive and 

negative range, respectively 
With predicted 𝐲, one can 

draw capacity curve C

CLUS

Extraction of 

46 outermost 

points from 

force-

displacement 

responses.

(a)
F

o
rc

e
 ,

 [
k
N

]

Displacement, [mm]

(a)
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Multiple Target Regression Model

• Uncertainty quantification of prediction by bootstrapping

(a) (b)

95% confidence interval

F

 [kN]

Displacement [mm]Real experiment [Beyer et al. 2008]

❖ Program available: CLUS

❖ For detailed code, program, data, and theory; Yang, and Cho. (2021). “Multiple Target Machine Learning Prediction of Capacity Curves 

of Reinforced Concrete Shear Walls”. SCCE. 
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Deep Neural Networks

• For single- or multiple-target global behaviors

(a) (b)

ℎ𝑾,𝑏 𝑿 = 𝑓 ෍

𝑖=1

𝑛

𝑊𝑖𝑥𝑖 + 𝑏 

𝑥1

𝑥2

⋮

𝑥𝑛

+1

ℎ𝑾,𝑏 𝑿
neuron

𝑊1

𝑊𝑛

𝑏

⋮

Input
𝑥1

𝑥2

⋮

𝑥𝑛

+1

𝑦1 𝑿

⋮
⋮

⋮

𝑦𝑛𝑡
𝑿

⋮

Output

Error backward 

propagation

❖ Program available: TensorFlow; H2O package in R 

Strength:

• Enable accurate multi-objective predictions

• Easy to construct and train

• Abundant open-source libraries
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New Feature Generation by Information Convolution

• The new feature (called information index (II)) enables ML to learn and improve material model.

• The II can help internal material points “feel” adjacent heterogeneity and varying BC’s.

Soft Materials Stiff Materials

Virtual 

excitation by 

unit stress

𝐼𝐼 = exp 1 −
1

3
෍

𝑗=1

3
𝜀𝑣,𝑝𝑟

𝑚
𝑗

𝜀𝑣,𝑝𝑟
𝑚

𝑗 − 𝜀𝑉𝐼,𝑝𝑟
𝑚

𝑗

Virtual stress-based II is defined as

ഥ𝐼𝐼 𝐱 = න𝜔 𝐱, 𝝃 𝐼𝐼 𝝃 𝑑𝝃

𝜔 𝑟 = 𝐿 2𝜋
−𝑁

exp −
𝑟2

2𝐿2

The spatial convolution is conducted with Gaussian weight

Giving rise to convolved information index 

Material 

Point
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New Feature (Convolved Information Index) for Diverse BC’s

Physical Meaning of 

Information Index

~ 0 : 

• Free to deform

• Close to free BC’s

• Far from stiff materials

~ 1 : 

• Cannot deform

• Close to fixed BC’s

• Adjacent to stiff materials
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New Feature (Convolved Information Index) for Random Heterogeneity

• A unitless soft cube 

(dimensions of 2 × 2 × 

2) containing small stiff 

cubes   (0.1 × 0.1 × 

0.1), used to test the 

model's ability to 

perceive heterogeneity 

within a material.

[For detailed code, program, data, and theory; Cho (2019). “A framework for self-evolving computational material models 

inspired by deep learning”.  Int. J. Numer. Methods Eng.]
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Glass-Box Learning Applied to Material Models

ഥ𝑰𝑰(𝐗)

New Feature of Convolved 

Information Index (II)

ℒ𝑴
ഥ𝑰𝑰 𝐗 ; 𝐚 → 𝒄

Link Function ℒ

• Defined at a material point 𝐗 
• Can quantify BC’s

• Can quantify heterogeneity

• Invariant to external stress

• Expressions of material coefficient 𝒄
• Interpretable relationships of 𝒄 and ഥ𝑰𝑰 𝐗
• Now 𝒄 can be different at every material point 

depending upon BC’s and heterogeneity

• Bayesian evolutionary algorithms to update 

the model parameters.

Given: Unknown

 decisive coef. 𝒄 
of a material model M
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Learning Hidden Rules by Flexible Link Function (LF)

(1) Two-Parameter Exponential LF

ℒ𝑀
ഥ𝐼𝐼; 𝐚 ≡ exp 𝑎1

ഥ𝐼𝐼 𝑎2

(2) CRS-based LF

ℒ𝑀
ഥ𝐼𝐼; 𝐚 = 𝑎1 𝑏1

ഥ𝐼𝐼 + 𝑎2 𝑏2
ഥ𝐼𝐼  

+ ∑𝑖 𝑎i+2 𝑏𝑖+2
ഥ𝐼𝐼
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Glass Box Interpretation of Identified Rules

• Learn the hidden rules by providing mathematical expressions about the 

target material coefficients and the convolved information index  through LF.
• For instance, the identified rule about 𝛽 as the smooth function, and the convolved 

information index in a CRS form is given by 

𝛽 𝐱 𝑖 = 𝑎1 + 𝑎2 × ഥ𝐼𝐼 𝐱 𝑖 + ෍

𝑗=1

3

𝑎𝑗+2 × 𝑏𝑗+2
ഥ𝐼𝐼 𝐱 𝑖
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𝐺 ǁ𝜀 = 𝐶𝑐𝑠

𝐺0

1 + 𝜇

2

𝜋
tan−1 ǁ𝜀−2 − 1 − ǁ𝜀 1 − ǁ𝜀2 +

𝜋

2
𝜇 1 − ǁ𝜀2

Ψ𝑛 𝜀𝑖
𝑐𝑟 =

𝜀𝑖
𝑐𝑟 < 0 𝜎𝑖

𝑐𝑟 = − 𝛽 ∙ 𝜎𝑐 𝜁
𝑛

𝑛 − 1 + 𝜁𝑛∙𝑘

𝜀𝑖
𝑐𝑟 > 0 𝜎𝑖

𝑐𝑟 =

Τ𝑓𝑡 𝜀𝑡 𝜀𝑖
𝑐𝑟 0 < 𝜀𝑖

𝑐𝑟 ≤ 𝜀𝑡

𝑓𝑡 1 −
𝜀𝑖

𝑐𝑟 − 𝜀𝑖

𝜀𝑢 − 𝜀𝑡

𝑐

𝜀𝑡 < 𝜀𝑖
𝑐𝑟 ≤ 𝜀𝑢

0 𝜀𝑢 <𝜀𝑖
𝑐𝑟

Glass-Box Approach to Learn Decisive Parameters of Concrete

3D crack model3D nonlinear shear model
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Glass-Box Approach to Learn Decisive Parameters of Concrete

𝛽, 𝐶𝑐𝑠, and 𝜇 are the unknown decisive material coefficients, which have 

critical roles in the material mechanisms

𝐶𝑐𝑠 is the ambient 

condition-dependent 

empirical coefficient for 

nonlinear shear of 

cracked concrete

𝛽 is the ambient 

condition-dependent 

strength enhancement 

factor

𝜇 is the coefficient of 

friction between 

cracked surfaces

20
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Glass-Box Approach to Learn Decisive Parameters of Progressive Bar Buckling

• 𝑐1 : coefficient that determines ultimate 

residual strength after buckling.

• 𝑐2 : coefficient that determines post-

buckling softening after buckling.

• 𝜅 : coefficient that determines the onset 

strain of buckling

21
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Diverse Large-scale Specimens for Feasibility Tests

Rectangular wall U-shaped  wall
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Glass-Box Approach Versus Manually Calibrated High-Precision FEAs

• VEEL(Virtual Earthquake Engineering Laboratory): a High-Precision Parallel Multiscale FEA 

Platform.

• EV-VEEL(Evolving VEEL): Integration of Glass-Box Learner and VEEL, EV-VEEL outperforms 

manually calibrated material models of VEEL
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Glass-Box Approach Capturing Microscopic Damage 

Steel Bar A Steel Bar C

Steel Bar B Steel Bar DReal experimental data (b) and (c) are 

cited from [Beyer et al. 2008]

Steel 

Bar A

Steel 

Bar C

Steel 

Bar B

Steel 

Bar D

Bars at the 

Outermost Corners
Detailed Stress-

Strain Hysteresis

[For detailed code, program, data, and theory; From Bazroun, Yang, Cho (2022). “Flexible and interpretable generalization of 

self-evolving computational materials framework.” Computers and Structures].
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Expandability of Glass-Box Machine Learning

• Expandable to as many mechanisms as needed

• Keeping higher interpretability

• Easy to replace, edit, and evolve

ℒ𝑁𝑒𝑤 ?ℒ𝛽 ℒ𝑆𝑐 ℒ𝜇 ℒ𝜅 ℒ𝑐1 ℒ𝑐2 +

Quasi-brittle 

crack
Nonlinear Shear 

over cracked 

surfaces by 3D 

interlocking

Progressive 

steel bar 

buckling

New mechanisms? 

Modularity 

of Glass-Box 

Framework
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DIGITAL TWIN DEFINITIONS AND TERMS 

The digital twin concept is the virtual representation 

of a physical product, process, or system, including 

lifecycle management information with bi-directional 

data interaction mirroring the physical entity (Grieves 

2014). 

• Digital Model: 

    Manual transformation of the data without referring 

to the real-time state.

• Digital Shadow:

    Automated and unidirectional interaction from the 

physical to the digital but not vice versa. 

• Digital Twin:

    Bi-directional interaction of data reflecting real-time 

states.
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LEVEL AND ARRANGEMENTS OF DIGITAL TWIN

DIGITAL TWIN DATA COLLECTION 

METHODS:

• Data-Driven Method

• Cloud Computing

• Internet of Thing (IoT)

• Cameras And Drones

• Sensors

• Laser Scanner

• GPS 
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• Broo et al. (2022) studied the SHM of a 

railway bridge.

• A fiber optic sensor system was installed 

during bridge construction for monitoring.

• Data was transmitted to a cloud server 

for structural load analysis.

• Results were displayed on3D dashboard.

Case Study

[For detailed code, program, data, and theory; From Broo, Bravo-Haro, and 

Schooling. (2022). “Design and implementation of a smart infrastructure digital 

twin.” Automation in Construction.]

Cited from [Broo et al. 2022]
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Conclusions

• Data- and machine learning-driven approaches are rapidly growing in the research 

communities of complex RC structures.

• Global behaviors of complex RC structures can be accurately learned and predicted 

by advanced statistical learning and ML methods.

• Millimeter-scale material behaviors can be learned and evolved by glass-box learners 

while accounting for varying BC’s and heterogeneous materials prediction.

• Researchers should decide on a suitable method based on its accuracy, 

interpretability, expandability, and evolvability for their own research goals.

• In the recent development of digital twins for urban planning, infrastructure systems, 

or individual components, the concept of DT presents as a transformative framework 

enabling real-time updating, monitoring, and making accurate decisions. 
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Thank you.

For programs, data sets, and 
discussion, feel free to contact 

icho@iastate.edu
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National Science Foundation, USA

NSF CMMI-2129796
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Supplementary 

Materials

31



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

LEVEL AND ARRANGEMENTS OF DIGITAL TWIN
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