IOWA STATE UNIVERSITY

College of Engineering

Data- and Machine Learning-Driven Approaches to
Analyses of Complex Reinforced Concrete Structures

Speaker
Dima Abuoliem Ashish Chapagain
Ph.D. Student Ph.D. Student

In Ho Cho
Associate Professor

CCEE Department, lowa State University, USA
ACI Convention -
26, March 2024

(QACi® cONCRETE
CONVENTION

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE




Diverse Data-Driven Approaches to RC Structures

onstant axial force
N'S E_ W

Machine Learning (Black Glass-Box Machine

box) Learning
« Multi-target regression model * generalized additive model |[_S————_U_—_
« Artificial neural network (Deep (GAM)

» New feature generation
» Material rule-learning

neural network)

Limitation of Black Box

» The limited description of the
internal complexity of
heterogeneous materials and
diverse boundary conditions
(BC’s).

* The lack of interpretability
when directly applying black-
box ML methods.

Physics-Ingrained Features and
Information Convolutions

Hidden Rule-Learning by Bayesian
Evolution Algorithm

0.001 m 1m ~10m City scale

Fixed bottom

Length scale

e

« From millimeters to meters
« From black-box learning to glass-box learning
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Basic Learning Setting: Overall Sketch

p-dimensional input vector s-dimensional output vector

Learner

« If s =1, single-target learning
« If s> 1, multiple-target learning

« Material properties
« Boundary conditions
« Loading conditions
« Static/Dynamic

Black-box Glass-box
learner learner

« Etc
« Material Rules And Expressions
 Interpretable relationships
between X and Y




Basic Learning Setting: Overall Sketch

p-dimensional input vector s-dimensional output vector

Learner

Global Local/Microscopic
Behaviors Behaviors
[~m] [ ~ mm]
* Global strengths  Individual material
* Global performance constituents
measure of structure + Millimeter length scale
as a whole Possible to micro or
nano scale -
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Advanced Statistical Learning

[ Statistical Learning ]—>

Statistical Learning Challenges

of RC Structures’ Data
Complexity

* Nonlinearity

» Variability

 High-Dimensional Space
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Parametric model
e.g., Linear regression, Multiple regression

Non-parametric model
e.g., generalized additive model (GAM)
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Advanced Statistical Learning

| Generalized Additive Model (GAM) ]

« Early works by Hastie and Tibshirani (1986, 1990).
« GAM is a non-parametric extension of the generalized linear model (GLM)
* Involves a sum of smooth functions:
9(EYD)) = f1(xy) + foalxzi) + f3(xzi) + -+
where,
« g is a smooth link function
* fj is the smooth function of the covariate(s) x;;.
« Y, is aresponse variable, and x; is ith vector of data points comprising multiple variables.

[Flexible Basis for f(x) ]

For instance, consider a single variable case,
q

OEPWIOTE .,
j=1 N [ -~ i

where b; is the j,, basis function; g; are parameters to be estimated from data.
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Advanced Statistical Learning

Types of Regression Splines

[(1) Cubic Regression Splines (CRS) ] [(2) Thin Plate Regression Splines (TPRS)]

Y
0.6 08
1 1 1

ol e
\/M/ N
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00 02 04

(o Thin Plate Regression Splines (TPRS) used\
for different covariate numbers and knots free.

« Cubic Plate Regression Splines (CPRS) that
the knot must select their location, limited to

one variable.
\_ J

(Wood, (2006).“Generalized Additive Model An Introduction with R,”. CRC press, Boca Raton, FL.”)
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GAM Prediction of the global behavior of RC shear walls

Actuator force [kN]

Actuator force [kN]
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Experiment (cited Orakcal and Wallace 2006)
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GAM-TPRS and GAM-CRS using up to 10 variables. -
VEEL: high-precision parallel multiscale FEA
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Advanced Statistical Learning

30
L
< 20
. . . >
Strengths of Statistical Learning T
] o o > —@— CRS =-E=-TPRS
« Optimal/Efficient Prediction 0
Model Construction 0 2 4 6 8 10 12
> How many variables ? Number of variables
> Which combinations ? Number of Number of CVE,/
variables combination Best combination of variables CVE  Pearson R?
) . 2 45 height(6.24e- hy(1.85e-05) 1224 0958 0.918
* High Interpretability 1)
. 16)
of variables ? 4 210 height(<2e-  afr(3.11e-13)  hy(5.51e-10) 2100 0976 0952
16)
dia(1.57e-08)
5 252 height(<2e-  afr(1.73e-13) dia(5.51e-08) 2246 0978 0.955
16)
h,(5.59e-06)  fc(0.292)
6 210 afr(<2e-16) thickness(<2e-  hy(1.27e-11) 26.21 0.981 0.962
. . ]6)
height(9.51e- fy(7.01e-08) dia(3.26e-06)
08)
< Program available: mgcv package in R; parallel version Rmpi -

« For detailed code, program, data, and theory; Song, Cho, Wong, (2020). “An Advanced Statistical Approach
to Data-Driven Earthquake Engineering”. J. Earthg. Eng.
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Multi-Objective Predictive Clustering Trees: Basic Setup

Single Tree
Root Node O X; >0.3
yes_|_ |no

x,> 1.1 ) x; < -1010
Branch

0 O O Ox7>123
1 1

\/\
Leaves QYQUIVO00000000

Expression Y = ) weight; X x;[condition of x;]
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Ensemble of Many Trees

Final
L Yfina = average of Y’s from trees
Prediction  ~final J
Strength:
« Enable accurate multi-objective predictions =

* Obtain expressions of the prediction model
« Efficient uncertainty quantification
« Easy to construct and interpret
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Multiple Target Regression Model

For multiple-target global behaviors

(a) Extraction of (b) Parameterize (c) Construct (d)Train and
46 outermost capacity curve C training data predict y
points from as 3rd-degree {xi, yi} by
force- Ldast polynomial Input features Multiple Target
displacement If/l‘l g{)‘z function ) X; €ER Regression

4 variables for positive and
negative range, respectively

500

With predicted y, one can
draw capacity curve C

N
[€2]
(@]

Force , [kN]
(@)

-250

-500
-100 -50 0 50 100

Displacement, [mm]
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Multiple Target Regression Model

* Uncertainty quantification of prediction by bootstrapping

95% confidence interval

Drift [%]
2 15 1 05 05 1 15 2
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(@) 0T wsH3 e (b)
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T = Boundary bar fracture — =l -Upper boundary
M s i sl i 500 e — - — Lower boundary
-100 -75 -50 -25 0 25 50 75 100
-100 -50 0 50 100
Real experiment [Beyer et al. 2008] Displacement [mm)]

Program available: CLUS
For detailed code, program, data, and theory; Yang, and Cho. (2021). “Multiple Target Machine Learning Prediction of Capacity Curves iy, a
of Reinforced Concrete Shear Walls”. SCCE. :
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Deep Neural Networks

 For single- or multiple-target global behaviors

(@)

Output

y1(X)

— ynt(X)

W\A
X neuron
’ T @— hwpyX
oy

/;/

Xn n
hW,b X) = f ( Wix; + b > Error bac_kward
+1 i=1 ¢ propagation "‘
Strength:
« Enable accurate multi-objective predictions -

« [Easy to construct and train
« Abundant open-source libraries
s Program available: TensorFlow; H20 package in R Gon g
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New Feature Generation by Information Convolution

* The new feature (called information index (I1)) enables ML to learn and improve material model.

« The Il can help internal material points “feel” adjacent heterogeneity and varying BC'’s.

Soft Materials Stiff Materials Virtual stress-based |l is defined as

(m)
Il =exp|l ——z

The spatial convolution is conducted with Gaussian weight

w(r) = (L\/%)_Nexp <— Zr—;)

Giving rise to convolved information index

&y pr
(m) (m)
E,pr () — &yppr ()

M) = f w(x, ) [1(§)dE
Virtual

<= cxcitation by =
unit stress gy B
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New Feature (Convolved Information Index) for Diverse BC'’s

A . AtZH=0.01 % At Z/H= 0.02 At Z/H= 0.2 1
S 028 0.8
0.8 07 o 1 06
Physical Meaning of 100] A -\ o
. g el ] 15996 0.2
Information Index H 0.4 ' 05 04 SLE P 5
O 0.2 0.2 04 02 -0.2
—~ : Z . 0.55 0 . . -
\ ; 0.5 0.4 0.05 0.4 -0.6
« Close to free BC’s bottom ~ wian  ©© Length Widh 00 — ° Widh 00 Longm i
e Far from stiff materials (C)
~1: . Es/Ep=103
« Cannot deform o "
« Close to fixed BC’s o2 e
« Adjacent to stiff materials o)
0.2\,\/{ 0.4 0.02
Width 0o Length ’
(F)
e
1 B
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« A unitless soft cube
(dimensions of 2 x 2 x| A
2) containing small stiff
cubes (0.1 x 0.1 x
0.1), used to test the
model's ability to
perceive heterogeneity
within a material.

(A) stiff cubes

(D)

[For detailed code, program, data, and theory; Cho (2019). “A framework for self-evolving computational matenal models

(B)

Randomly scattered o

08 06 04 €2 0 02 04 05 [

inspired by deep learning”. Int. J. Numer. Methods Eng.
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Glass-Box Learning Applied to Material Models

New Feature of Convolved Link Function L
Information Index (Il)

Given: Unknown

gecisive coerl. c
of a material model M

LyTI(X);a) - ¢

» Defined at a material point X « Expressions of material coefficient ¢

 Can quantify BC’s - Interpretable relationships of ¢ and IT(X)

« Can quantify heterogeneity « Now c can be different at every material point
* |nvariant to external stress depending upon BC’s and heterogeneity

« Bayesian evolutionary algorithms to update
the model parameters.

sil-—
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Learning Hidden Rules by Flexible Link Function (LF)

(1) Two-Parameter Exponential LF

o
==
o

Link Function

= ot [0S [F¥] F - A
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(2) CRS-based LF

LM(I_I, a) = aq b1 (I_I) + a, bz (I_I)

+ X Qiy2 biyz (D)

(a)
120 +

5100 -

= 80 +

S 60 f

[x, =

« 403

204

T e

0 0.2 0.4 0.6 0.8 1
Convolved Information Index J]

----- Max 1 Max 10 = - Max 20
......... Max 50 Max 100
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Glass Box Interpretation of Identified Rules

« Learn the hidden rules by providing mathematical expressions about the
target material coefficients and the convolved information index through LF.

« For instance, the identified rule about /5 as the smooth function, and the convolved
information index in a CRS form is given by

5 51 5T
o f . - — o b= 263
— T o N B & ;-\-—-._.-/
3 FE R e e e Y A
_5 _IIII:IIII:HH}HH:IIII _S _|||\I\|\|}||||I||||I|||| s L1l | \ \ | Ll
T7 T7 0 02040608 1 0 02040608 1 0 020400608 1
,B(X(l)) = a4 + a, X II(X(l)) + E Clj_|_2 X b]+211(X(1)) . it . it Tl
j:1 & 0 E/—\ 7 -E
<+ T F
S 7 4,-580 o
-5 ljll 3%
0020406081 < 1+
5 Il = £
C -3 A
w0 5—-——/"_"‘ 5
= C ‘902
(ST S PR, w -7
002040608 1 9 Hommmmmmip

il | o

GE (@G> CONCRETE s
’ R ADVANCIN NCRETE
THE WORLD'S GATHERING PLACE FO CING CONC ] g I




lPn(‘gicr) =

3D nonlinear shear model 3D crack model

Contacting
surface

area

Possibly 3 orthogonal
Rigid particle micro crack surfaces
Of Diax

cr n
- _@ oc)¢ <n -1+ (”‘k>

A

f

\

;{tan-1\/§-2 —1-&/1-&+ gu(l - 52)}
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Glass-Box Approach to Learn Decisive Parameters of Concrete

B is the ambient
condition-dependent
strength enhancement

factor

S, C.s,and u are the unknown decisive material coefficients, which have

(a) (b)
80 0.05
—_ cs
§60 ,o b 004 ---00l p
=T o N 1.2 s F T 0.008 e -
= S ' 5003 f —0005 o7 .
£ 40 00 _ R B L
- 5 SN 3002 e
= 15 0 s
520 1 4 T = R
2 ,. S § 001 s
w s
(| A ——— I 0 2 oy
0 0.002 0.004 0.006 0 0.002 0.004 0.006
Normal strain Shear strain
C
()1.0 ~ =
0 8 : "\._:,-:‘ 01
© T N e 0.5
o - Sar | mmme- 1
) .. S 06 + g
u is the coefficient of < f
. - [da] 04 T
friction between i
02 +
cracked surfaces i
00 ........................

critical roles in the material mechanisms
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C.s Is the ambient
condition-dependent
empirical coefficient for
nonlinear shear of
cracked concrete




* ¢, . coefficient that determines ultimate
residual strength after buckling.

> (¢, . coefficient that determines post-
buckling softening after buckling.

« k :coefficient that determines the onset
strain of buckling

Compressive Stress

Ry
<N

0 0.02 0.04 0.06 0.08 0.1 0.12
Compressive Strain

960 120
=]
= 800 - 1.0 100
= - -0.5 K
7 640 - 80 +. | — ——
= | & b/ :
RS T R T 005 [ 3~60
=
o
% 320 40 ¢
£
20
S 160
0 0 + +
0 20 40 60

0 0.05 0.1

0.5
Compressive strain L/D - (f,/100)
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Cited from [Dhakal, and Maekawa. 2002]

otherwise £* > 7£y

1,0 = kL, LY =k 1,0

Iy
Ly kLy Lb(z) = .
L= kL %25 kL”

Lb(4) =k L0(4)

B

L b(5) =k L0(5)

N
crushed surrounding

4 surrounding solid elements concrete layers
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(a) (b) Axial Load 0.06 1
Axial Load

b
1<)
2

Displacement [m]

D
o
=
E

Cyclic loading EW

direction

, Height
il (3350mm)

Displacement [m]

Height
(4560 mm)

Width

Rin gt (1300 mm)

Length (2000 mm) (1050 mm)
(150 mm)

Rectanqular wall U-shaped wall
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Z
T T S A S -0.1 } } }
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(a) (b) (e) (1)

1 400 600 600 +
min|Err| min|Err| 400 & min|Err| 400 £ minlErr|
200 § EV-VEEL = 1E-2 % 200 t EV-VEEL=2% | EV-VEEL = 1% EV-VEEL = 1 %
z VEEL = 10 % z Z200 f VEEL=4% 2200 - VEEL = 11 %
< : < 01 % o f wsHs < o f TUB-N 2
~— 0 " - d = -
: A ——" - : : 4
2 periment 2 .200 + . = - —— Experiment
S} VLAY e 27 . e | s A T PevERL | 220 1 7/
: HA/4  ---VEEL -400 £ T ---VEEL = -
K5 F W -400 § 400 § LT -
L g p o ; I Seaits. - -~ VEEL
400 e L 000 e 600 by 600 e P - e ST T B
-0.06 -0. 04 -002 0 002 004 0.06 -0.08-0.06-0.04-0.02 0 0.02 0.04 0.06 0.08 -0.08-0.06-0.04-9.02 0 0.02 0.04 0.06 0.08 -0.1 -0.05 0 0.05 0.1
© Displacement (m) ) Displacement (m) (2 Displacement (m) (h) Displacement (m)
600 600 : 1000 ;
f  min|Err| } min|Err]| ; min|Err| 12%
S f EV-VEEL =1 % e t EV-VEEL =5 % 500 + EV-VEEL=1% _ _ . ~ lg:{z
2200 VEEL =3 %_ 2200 + VEEL=5% ‘ ; < 6%
R - s = E 4%
< 0 > 0 fWSH4 5 04 & ﬂ 1
2 2 = = 1 N
2200 £-200 T | CtB Experiment " e :\ S
""" F 7 : o F ; -----EV-VEEL PN S
400 ¢ 400 + _ | Z 44 | TUB-EW — - _VEEL STEEEE q\% & @
600 s - ——— —— 600 —— -1000 S L ey h
01 005 0 005 0. -0.08 0,03 0.02 0.07 L 99 . -0 0.05 0.1 »EV-VEEL 0OVEEL
Displacement (m) Displacement (m) Displacement (m)

« VEEL(Virtual Earthquake Engineering Laboratory): a High-Precision Parallel Multiscale FEA
Platform. o

« EV-VEEL(Evolving VEEL): Integration of Glass-Box Learner and VEEL, EV-VEEL outperforms
manually calibrated material models of VEEL
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Glass-Box Approach Capturing Microscopic Damage

Bars at the Detailed Stress-
Outermost Corners Strain Hysteresis
| Bar
e 0 Steel Bar A o | Steel Bar C
Steel \: 400
i Bar B g zoz g
- E §-200
L -400
Steel 600 fo o . Oelofbuckling . Onsetofbuckling
Bar D ‘g -0.02 0 0.02 0.04 -0.02 0 0.02 0.04 0.06
" 0 Strain (2) Strain
1 : 600
® 400
= 200
%-200
-400 i A
Onset of buckling
! S o -0.02 0 0.02 0.04
Real experimental data (b) and (c) are Steel Bar B Steel Bar D

cited from [Beyer et al. 2008] -

[For detailed code, program, data, and theory; From Bazroun, Yang, Cho (2022). “Flexible and interpretable generalization of
self-evolving computational materials framework.” Computers and Structures].
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 Expandable to as many mechanisms as needed
« Keeping higher interpretability

« Easy toreplace, edit, and evolve

Modularity
of Glass-Box
Framework

Y ! V Y New mechanisms?
Quasi-brittle Nonlinear Shear Progressive
CI’aCk over Cracked Steel par
surfaces by 3D buckling -
interlocking
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DIGITAL TWIN DEFINITIONS AND TERMS
The digitql twin concept is the virtual repre_sentat?on !

Physical
Object

of a physical product, process, or system, including : :
lifecycle management information with bi-directional IR : I
data interaction mirroring the physical entity (Grieves Digital S'?]'g'ta'

Model Physical adow
2014).

Automatic Data —,

Virtual
Object

Digital Mapping

Flow
Digital Manual Data ----»
. Twin Flow
"sensor\ ( Drones| '..rc:lu::::;;in.i RN e . .
------ ' ML . . .
o E — '\ Manual transformation of the data without referring
AMIEE T Human | virual to the real-time state
o . / D;emsm'm Infrastructure o .
\Devices, {Eameras__! '\ Making / B D|g|tal Shadow:
""" D AR S N - Automated and unidirectional interaction from the
emgment o [ signa ) (FUME) S physical to the digital but not vice versa.
Systems/ Otimzaon & | Digital Twin: -
Feeding Actions s

Bi-directional interaction of data reflect
states.

) C'C' CONCRETE
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LEVEL AND ARRANGEMENTS OF DIGITAL TWIN

Simulation
Level

Description

Data Processing Techniques

Individual
Component

Any singular element within an
extensive system or process is
characterized by its unique
properties and functions.

*lImage, Sensor data, and 3D
laser scanner for detection.
«Data processing and
digitalization for real time
monitoring.

The integrated combination of

diverse individual components,

*Advanced numerical modeling
and real-time data capturing

6GITAL TWIN DATA COLLECTIOI\N
METHODS:

« Data-Driven Method

* Cloud Computing

* Internet of Thing (loT)

« Cameras And Drones

* Sensors

 Laser Scanner

System |with each having unique method.
functional properties. Emergency response and
crisis management.
The complex combination of  |*Advanced mapping
multifarious systems, each a |techniques and movement
Urban/City |connection of related analysis.
componentsts and process Disaster response and
functioning to creat the level. |monitoring of the resource.
Computational methods to «Integration of multiple data
, represent, analyse and predict |sources.
National or : : :
Global the behaviour of complex *Mathematical modeling and

system spanning entire
countries or the globe.

prediction with advanced Al
and ML.
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Case Study

Cloud-based Cyber-
physical System (C2PS)

Y
Physical

Environment

r@e—rllit)i
Structural
Analysis
3D Model

Dafa
Acquisition
ayer

Digital|Mapping
Layer

Data
Transfer
ayer

loud
Platform
ayer

Feeding Actions

Broo et al. (2022) studied the SHM of a\
railway bridge.

A fiber optic sensor system was installed
during bridge construction for monitoring.
Data was transmitted to a cloud server
for structural load analysis.

Results were displayed on3D dashboardj

[For detailed code, program, data, and theory; From Broo, Bravo-Haro, and
Schooling. (2022). “Design and implementation of a smart infrastructure digital
twin.” Automation in Construction.]
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Conclusions

o Data- and machine learning-driven approaches are rapidly growing in the research
communities of complex RC structures.

o Global behaviors of complex RC structures can be accurately learned and predicted
by advanced statistical learning and ML methods.

o Millimeter-scale material behaviors can be learned and evolved by glass-box learners
while accounting for varying BC’s and heterogeneous materials prediction.

o Researchers should decide on a suitable method based on its accuracy,
interpretability, expandability, and evolvability for their own research goals.

o In the recent development of digital twins for urban planning, infrastructure systems,
or individual components, the concept of DT presents as a transformative framework
enabling real-time updating, monitoring, and making accurate decisions. -
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Thank you.

For programs, data sets, and d Relevant Publications

: - o Cho (2022). Nature, Scientific Reports
discussion, feel free to contact o Bazroun, Yang, Cho (2022). Computer and

Icho@iastate.edu Structures.
o Yand and Cho (2021). J. of Soft Computing
Civil Engineering.
Acknowledgement: Generous support from o Cho et al. (2020). Communications Physics.

National Science Foundation, USA o Song, Cho, Wong (2020). J. of Earthquake
Engineering.
o Cho (2019). Int. J. Numerical Methods

NSF CMMI-2129796 Engineering.
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LEVEL AND ARRANGEMENTS OF DIGITAL TWIN

Simulation

Drescripticon

Data Processing Techniques

Cvi

igital Category

Reference

Lewvel (DM, D5, 0T)
OT for road user classification, including road Includes creating a 20 point cloud model with [SFR1]
modeling, SFM, and user mowement digitalization and 20 image trained with B-CRM deep learning
with F-CRIM, and creating 20 bounding botes with model, Followed by 20 bounding boxes For road users os Lu and Dai (2023)
cameras and wanishing points simulating different u=ing camera and wanizhing points ko integrate the
Indiwvidual scenarios o improwve predicrion eFficiency. maodel For road infrastruciure and user movement.
I:Dmpclnent The bogie in high-speed train Fault monitoring with the | Proce=s=sing the data with signal methods to estimate
OT maodel integrates the phy=ical and wirkual twins, the Fault=s by algorithms for sensor data measuring
considering the geometry, dynamics, and wibration of | the bogie Fault=s. The bogie condition is classified with os Wiy et al. [2023)
the bogie system. Proces=sing the =signal data for ZMM= based on wibration signals. The Fault mode]
faults diagno=is and monitoring. and OT are used to decide maintenance and repairing.
=& different data collection method=s to digitalize DOata proce==sing carried out with IT programmes to
and analyse the railway stare using the ARIARE improwe the system output, guality of data. The
version of RAILTOFOMRMODEL software. The decision-making phase is based on accurate Oos -ISSA et al., [20232)
captured images and data wiew the state of the reflecting of the system state using realistic images
System. from drones=s.
System — . . . . —
Oigital model for Railway Bridge located in the LI The collected data i= stored on a minicomputer on
with FO =ensors embedded during the construction the bridge and then transferred by a 45 network o &
pha=e in both flange and deck. The collected data point cloud Oocker platform for proce=s=sing. The web os -Eroo et al. [2022)
zawed an minicomputer then rransfer o point cloud interface allows For wisualization, analy=sis, and
serwer with 4G network. access by AF1 Hub.
=Create OT For the Kaunas University campus and =The data proce=ssing include s analyzing point cloud
part of the Lithuania city to estimate the energy data, images of building=, and energy performance
performance and CO2 emis=sions of the building= and | with Bentley OpenCitie= Planner For simulating energy os Fobertson [2024]
infrastructure with data collected by drones. The performance ower real-time planning. For W& -bazed
~ information was=s collected with drones proce==ing reality modeling use, Bentley?s ContextCapture
Urban/City =Creating OT of Singapore 30 mapping in two =The data proce=ssing phase include=s analyzing and
pha=e=: aerial in 2014 and strest mobile mapping in managing a large =et of data collected from aerial and
201%. The main goal of this model is b0 map the entire | street mapping. including point cloud maps, imagery, Os Swegena [Z022]
counktry with data-capturing devices to build an and other geo=spatial data using software solution=
effizient and reliable map For planning and risk lik.e Bentley Orbit. The updating of OT mapping with
Predickicon oF Future climaks changes, cxkreme svenks kaking Data processing is carried out by FE maodel, L, and
acticonz For energy designing process, new abservation =tatistizal analy=sis with high computing tool=s dealing bkt cvemeizmies
sypstem, and cxtreme weather emergencics ackions. with mas=sive data and wisualisation methods=. Os =0 Salzmsas,
Engincering, and
Maticornal or Plcdicine. [2023F].
Global DT dunami< inkerackive carth spstem Focusing on the wakar Diaka proceszing using mathematical modezls, maodzling the
cypcle scenarios for capturing and detecting impacks. The Flood, and use of Al and FAL algorithms For Flood prediction.
madzl iz inkegrated, observed, and analyzcd within the Oos Huzng ok al. [2022]

created Framewaork.
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