

FLEXURAL BEHAVIOR OF CONCRETE BEAMS PRESTRESSED WITH HYBRID TENDONS

Adi A. Obeidah, Ph.D. HNTB Cooperation Project Engineer

Hani Nassif, P.E., Ph.D., FACI Rutgers Infrastructure Monitoring and Evaluation (RIME) Group Professor and Director

- Introduction
- Experimental Program
- ACI Design Guide Provisions
- Finite Element Modeling
- Conclusions

- Hybrid prestressed systems are defined as combined <u>bonded steel</u> tendons with <u>unbonded CFRP or steel</u> tendons relatively a new class of prestressed concrete members requiring further research.
- Used in <u>segmental bridges</u> and retrofitting and <u>rehabilitation</u> of existing damaged members.
- Testing results exhibited good control of <u>cracking and enhanced</u> <u>carrying-capacity</u>, without significant reduction of the system ductility or deformability.

- <u>Unbonded steel</u> strands are vulnerable to <u>chloride attacks</u> raising the risk of the strands' brittle failure.
- Corrosion promoted by <u>chloride attacks or inadequate grouting</u>, does not always generate visible warning signs (cracks or corrosion stains) making it difficult to detect during inspections.

• A recent study analyzing the corrosion-induced failure of segmental and box-beam bridges post-tensioned with grouted steel tendons revealed that no warning signs were visible prior to tendon failure (system failure/collapse) for most of those bridges resulting in personal injury and substantial loss of life, property, and loss of infrastructure, especially that some of these bridges were just <u>9 years old</u>

- Due to its inherent <u>corrosion resistance</u>, the advantages of incorporating FRP tendons in prestressed girder systems are tremendous. FRP tendons have a superior strength-to-weight ratio and excellent fatigue resistance.
- The <u>linear-elastic nature of FRP tendons exhibit brittle flexural failure</u> when exclusively used in prestressed members, which restricts their implementation in prestressed concrete bridges.
- Driven by the need of innovative sustainable designs, incorporating multiple tendon materials (steel and CFRP) in a hybrid prestressed system offers a unique synergy that would improve durability at no-cost to the system ductility.

Objective(s)

- o Assess the impact of combining unbonded CFRP tendons
 - with bonded steel tendons on the overall flexural structural behavior at serviceability and ultimate limit states based on:
 - ✓ <u>laboratory testing</u> of eighteen hybrid prestressed beams.
 - ✓ analytical evaluation following <u>current practice</u> and using <u>finite element modeling</u>.

aci

ΟΝ/ΕΝ

Experimental Program: Beam Testing Set-up & Dimensions (cm)

9

Beam	Beer		Bon	ded Tend	on	Ur	bonded T			т	
Group	No.	Designation	$f_{pe(B)}$ (MPa)	A _{psB} (mm ²)	d _{pB} (cm)	$f_{pe(U)}$ (MPa)	A _{psU} (mm ²)	d _{pU} (cm)	L/d _e	ωe	(m)
Control	1	BS-2-3	1282	55	22	1145	55	19	14.3	0.055	3
Control	2	BS-2-2	1284	37.4	22	1326	37.4	16.9	14.3	0.037	3
	2		-	-	-	1055	55	19	16.9	0.050	2
Unbonded	3	US-2-3	-	-	-	1020	55	22	10.8	0.050	3
Steel	4	US-1-3	-	-	-	1103	55	15.6	17.6	0.039	3
	5	US-1-4	-	-	-	1027	99	15.6	13.9	0.049	3
Unbonded CFRP	6	UF-1-3*	-	-	-	1165	71	15.6	17.4	0.049	2.4
	7	UF-1-3	-	-	-	1276	71	15.6	18.0	0.050	3
	8	UF-1-4	-	-	-	1027	123	15.6	16.8	0.064	3
	9	HS-U3-B3	1082	55	22	1089	55	19	14.3	0.048	3
Hybrid	10	HS-B3-U3	1213	55	22	1289	55	15.6	15.3	0.048	3
Steel	11	HS-B3-U4	1179	55	22	965	99	15.6	16.1	0.077	3
	12	HS-B4-U4	1117	99	22	1082	99	15.6	15.6	0.104	3
	13	HF-B2-U3	1052	37.4	22	1230	71	16.9	15.6	0.055	3
Hybrid Steel-CFRP	14	HF-B2-U3d^	1033	37.4	22	1380	71	19	15.6	0.052	3
	15	HF-U3-B3	1469	55	22	1165	71	19	14.2	0.060	3
	16	HF-B3-U3	1220	55	22	1551	71	15.6	15.9	0.071	3
	17	HF-B3-U4	1200	55	22	1082	123	15.6	16.7	0.102	3
	18	HF-B4-U3	1110	99	22	1503	71	15.6	15.4	0.077	3

Infrastructure Monitoring and Evaluation (RIME)

CONVENTION

$$\omega_{e} = \frac{A_{psB}f_{puB} + A_{psU}f_{puU} + A_{s}f_{y} - A'_{s}f'_{y}}{bd_{e}f'_{c}} \quad d_{e} = \frac{A_{psB}f_{puB}d_{pB} + A_{psU}f_{puU}d_{pU} + A_{s}f_{y}d_{s}}{A_{psB}f_{puB} + A_{psU}f_{puU} + A_{s}f_{y}}$$
The effective reinforcing index (ω_{e}) and the effective flexural reinforcement depth (d_{e}) CONCRETE

The effective reinforcing index (ω_e) and the effective flexural reinforcement depth (d_e) defined by Naaman (1994) are modified slightly by the authors to utilize f_{pu} instead of f_{ps} ,

Experimental Program – Load versus Mid-Span Deflection

- For beam with similar (ω_e), replacing bonded tendons with unbonded tendons resulted in a reduction in the load and deflections at the cracking and ultimate stages.
- Beams US-1-4 ($\omega_{e(s)}=0.047$) and UF-1-3 ($\omega_{e(s)}=0.045$) achieved a lower cracking load by 48 and 39% and deflections by 62 and 45%, compared to the bonded beam BS-2-3 ($\omega_{e(s)}=0.051$), respectively.
- The failure load decreased by 33% for both beams (US-1-4, UF-1-3), compared to the bonded beam BS-2-3

Experimental Program – Load versus Mid-Span Deflection

- Testing results show that hybrid steel-CFRP beams (HF-B3-U4 with ω_e =0.09 and HF-B4-U3 with ω_e =0.074) achieved strength limit state loads of 147, and 151 kN at 117 and 79 mm of deflection
- Compared to hybrid-steel beam HS-B4-U4 (ω_e =0.098), hybrid-CFRP beam HF-B3-U4 (ω_e =0.09) achieved similar ultimate moment capacity at failure with an ultimate deflection increase of +18%. On the other hand, a reduction of 28% in deflection was observed in HF-B4-U3 (ω_e =0.074) compared to HS-B3-U3 (ω_e =0.074).

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

lew Orleans, Louisiana, USA March 23-24, 2024

Experimental Program – Ductility Indices

Designation	ωe	Mcr	Δ_{cr}	My	Δ_y	Mu	Δ_u	μ _y	μ _{zou}	Et^
US-1-4	0.047	1400	3.6	2850	25	4000	51	20	40	0.006
UF-1-3	0.045	1650	2.5	2050	16	4000	58	4	56	0.004
%	-4.3	18	-31	-28	-36	0	14	-80	40	-33
UF-1-4	0.06	1700	4.3	2600	12	5100	140	12	98	0.009
HF-U3-B3	0.06	3100	6.6	4550	17	6650	81	5	26	0.015
%	0.0	82	54	75	42	30	-42	-58	-74	67
HS-U3-B3	0.044	2250	5	3150	11	5550	132	12	61	0.015
HF-B2-U3d*	0.045	2600	4	4400	17	5850	76	4	45	0.01
%	2.3	16	-20	40	55	5	-42	-67	-26	-33
HS-B3-U3	0.048	2650	8	3350	12	5350	122	10	31	0.019
HF-B2-U3*	0.049	2250	3	4250	16	5300	68	4	53	0.008
%	2.1	-15	-63	27	33	-0.9	-44	-60	71	-58
HS-B3-U4	0.074	2350	5	4750	16	6900	109	7	67	0.008
HF-B3-U3	0.069	2700	4	4100	23	6000	99	4	54	0.018
%	-6.8	15	-20	-14	44	-13	-9	-43	-19	125
HS-B3-U4	0.074	2350	5	4750	16	6900	109	7	67	0.008
HF-B4-U3	0.074	3500	3	6100	5	7550	79	15	57	0.009
%	0.0	49	-40	28	-69	9	-28	114	-15	13
HS-B4-U4	0.098	2900	6	5000	19	7350	99	5	43	0.007
HF-B3-U4	0.09	2950	5	5100	18	7350	117	7	57	0.015
%	-8.2	1.7	-17	2	-5	0.0	18	40	33	114
* $c_{\rm c} = 0.010 \pm 0.022$ 1 kN = 0.225 kin 1 inch = 25.4 mm										

[^]Net tensile strain at the non-prestressed reinforcements excluding strains induced due to creep, prestressing, or shrinkage

$$\mu_{Zou} = \frac{M_u}{M_{cr}} \cdot \frac{\Delta_u}{\Delta_{cr}}$$

$$\mu_{\Delta} = \frac{\Delta_u}{\Delta_v}$$

Ductility Results

- Three ductility indices are utilized, which are the conventional deformation index $(\mu_y \ \Delta_u / \Delta_y)$, Zou (2003) expression, and the net tensile strain method defined in ACI 318.
- Compared to the other two methods, the net tensile strain method adopted in ACI318 shows a reasonable trend with the effective reinforcement ratio for unbonded and hybrid CFRP-steel beams.
- CFRP hybrid beams shows an increase in the net tensile strain ($\Delta \epsilon t$) for CFRP prestressed beam with $\omega_{e(s)}$ equal or exceeding 0.06, ranging between 13 to 125%. On the other hand, a decrease in the net tensile strain ($\Delta \epsilon t$) ranging between 33 to 58% is observed with CFRP prestressed beams with $\omega_{e(s)}$ less than 0.06.

Experimental Program – Flexural Member Failure Criteria

and Evaluation (RIME)

- According to <u>ACI 440.4R</u>, a *compression-controlled (CC)* section occurs when the concrete crushes ($\varepsilon_{cu} = \sim 0.003$) before the failure of the tendons, while a tension-controlled (TC) section takes place when the failure of the member is governed by the tensile capacity of the tendon ($\varepsilon_{cu} < < 0.003$). ACI 440.4R identifies those section during the design phase based on the concept of the balanced ratio (ρ_b) in which TC sections can be achieved with prestressed reinforcement ratio less than the balanced ratio (ρ_b), while CC sections required a prestressed reinforcement ratio larger than ρ_b .
- Unlike ACI 440.4R, <u>ACI 318</u> relies on the net tensile strain in the outermost tension reinforcement in the critical section. TC sections are defined as members in which the net tensile strain ε_t at the level of the outermost tension reinforcement developed when the outermost concrete compressive strain ε_{cu} reaches 0.003 is greater than or equal to 0.005 (ε_t ≥ 0.005) for prestressed reinforcement and ε_{ty} + 0.003 (ε_t ≥ ε_{ty} + 0.003) for non-prestressed reinforcements.

Experimental Program – Flexural Member Failure Criteria

			reinforcement ratio, %				ACI	318-19 ^	ACI 440.4R**		
Beam	d _{e(s)}	We(s)	$ ho_{pB}$	$ ho_{pU}$	$ ho_{tot}$	Ecu	$\varepsilon_t^{\wedge \wedge}$	Flexural behavior	RF*	Flexural behavior	
BS-2-3	212.3	0.051	0.18	-	0.38	0.0031	0.019	TC	х	CC	
BS-2-2	205.7	0.036	0.13	-	0.33	0.0022	0.026	TC	~	TC	
US-2-3	212.3	0.049	-	0.18	0.38	0.0029	0.023	TC	х	CC	
US-1-3	181.6	0.037	-	0.12	0.32	0.0026	0.077	TC	Х	CC	
US-1-4	173.0	0.047	-	0.21	0.41	0.0027	0.006	TC	х	CC	
UF-1-3*	175.3	0.042	-	0.15	0.35	0.0026	0.004	TR	х	CC	
UF-1-3	175.3	0.045	-	0.15	0.35	0.0028	0.009	TR	х	CC	
UF-1-4	168.9	0.060	-	0.26	0.46	0.0027	0.015	TC	Х	CC	
HS-U3-B3	212.3	0.044	0.09	0.08	0.38	0.0030	0.0194	TC	х	CC	
HS-B3-U3	198.6	0.048	0.08	0.12	0.40	0.0029	0.0084	TC	Х	CC	
HS-B3-U4	189.0	0.074	0.08	0.21	0.49	0.0028	0.0072	TC	х	CC	
HS-B4-U4	195.6	0.098	0.15	0.21	0.56	0.0029	0.0075	TC	х	CC	
HF-B2-U3	195.6	0.049	0.06	0.14	0.40	0.0022	0.0103	TC	✓	TC	
HF-B2-U3d	195.6	0.045	0.06	0.14	0.40	0.0019	0.0150	TC	✓	TC	
HF-U3-B3	214.6	0.060	0.09	0.10	0.40	0.0029	0.0180	TC	\checkmark	CC	
HF-B3-U3	191.8	0.069	0.08	0.15	0.43	0.0029	0.0088	TC	\checkmark	CC	
HF-B3-U4	183.1	0.090	0.08	0.26	0.54	0.0030	0.0150	TC	Х	CC	
HF-B4-U3	198.4	0.074	0.15	0.15	0.50	0.0031	0.0259	TC	\checkmark	CC	

- These results shows that hybrid CFRP-Steel beams can achieve the same failure modes observed in hybrid steel beams without sacrificing any portion of the capacity and deformability of the section.
- Hybrid CFRP-steel beams could achieve as much net tensile-strain and more, compared to hybrid-steel beams with similar ω_e ratios.
- HF-B2-U3 and HS-B3-U3 ($\omega_e=0.049$, $\omega_e=0.048$) achieved a net tensile strain of 0.0103 and 0.0084, respectively, which designates both as tension-controlled members in accordance with ACI 318, even though one of them failed in concrete crushing, while the other failed by the rupture of the non-prestressed reinforcement.

ACI Design Guide Provisions: <u>ACI 440.4R-04</u>

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 \beta_d I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g \qquad \beta_d = 0.5 \left[\frac{E_p}{E_s} + 1\right]$$

$$\begin{split} I_{cr} &= \frac{b(c_{cr})^3}{3} + nA_{psB} (d_{psB} - c_{cr})^2 + nA_{psU} (d_{psU} - c_{cr})^2 + nA_s (d_s - c_{cr})^2 \\ f_{psB} &= f_{peB} + E_{psB} \varepsilon_c \left(\frac{d_{pB}}{c} - 1 \right) \\ f_{psU} &= f_{peU} + \Omega E_{psU} \varepsilon_c \left(\frac{d_{pU}}{c} - 1 \right) \quad \text{where} \quad \Omega = \frac{5.4}{L/d_p} \end{split}$$

 $A_{psB}f_{psB} + A_{psU}f_{psU} + A_sf_y - A'_s|f'_y| = 0.85\beta_1f'_c(b - b_w)h_f + 0.85\beta_1f'_cb_wc_{cr}$

$$M_{n} = A_{psB}f_{psB}\left(d_{pB} - \frac{a}{2}\right) + A_{psU}f_{psU}\left(d_{pU} - \frac{a}{2}\right) + A_{s}f_{y}\left(d_{s} - \frac{a}{2}\right) - A_{s}'\left|f_{y}'\right|\left(d_{s}' - \frac{a}{2}\right) + 0.85\beta_{1}f_{c}'(b - b_{w})h_{f}\left(\frac{a - h_{f}}{2}\right) + 0.85\beta_{1}f_{c}'(b - b_{w})h_{f}(b - b_{$$

<u>Note:</u> For tested beams with hybrid tendons, AASHTO uses $A_{psB}f_{psB} + A_{psU}f_{pse}$ (instead of $A_{psB}f_{psB} + A_{psU}f_{psU}$) to satisfy the equilibrium of forces and the weighted average stress $(f_{ps(WA)})$ in the bonded and unbonded prestressing tendons $(A_{psB} + A_{psU})f_{ps(WA)}$ (instead of $A_{psB}f_{psB} + A_{psU}f_{psU}$) to satisfy the moment equilibrium.

ACI440 Design Guide and AASHTO Provisions

Accuracy of ACI 440.4R in predicting deflections and moment at cracking, yielding and ultimate carrying capacity.

	Δ	cr	Δ	v	⊿	u	M	cr	M	l _y	M	l _u	Ecu	ı
Designation	ACI	μ	ACI	μ	ACI	μ	ACI	μ	ACI	μ	ACI	μ	ACI	μ
BS-2-3	2.03	0.31	9.91	0.76	21.08	0.15	2204	1.03	3346	1.08	4266	0.89	0.0024	0.77
BS-2-2	1.96	0.69	11.43	1.03	23.11	0.27	1690	1.21	2461	1.07	3956	1.12	0.0018	0.82
US-2-3	1.42	0.33	8.89	0.56	19.05	0.13	2009	1.05	3346	1.08	4399	0.92	0.0026	0.88
US-1-3	1.22	0.37	6.86	0.93	16.76	0.18	1151	0.88	1974	1.13	2549	0.90	0.0013	0.49
US-1-4	0.81	0.23	6.35	2.50	13.46	0.27	1522	1.36	2230	0.98	3487	1.09	0.0018	0.68
UF-1-3*	1.30	0.87	10.16	2.18	21.59	0.45	1336	0.99	2186	1.17	4107	1.05	0.0016	0.61
UF-1-3	1.55	0.62	12.19	0.76	26.16	0.45	1390	1.06	2230	1.37	2894	0.91	0.0018	0.63
UF-1-4	1.75	0.41	8.64	0.72	19.30	0.14	1708	1.26	2841	1.37	4027	0.99	0.0022	0.80
HS-U3-B3	1.65	0.31	7.37	0.68	17.27	0.13	2089	1.16	2956	1.18	4071	0.92	0.0022	0.74
HS-B3-U3	2.46	0.31	13.97	1.17	27.18	0.22	2115	1.00	3257	1.22	4620	1.08	0.0021	0.73
HS-B3-U4	2.62	0.54	11.18	0.70	23.62	0.22	2204	1.18	3089	0.82	5178	0.94	0.0029	1.03
HS-B4-U4	2.16	0.37	9.40	0.49	21.84	0.22	2815	1.22	2983	0.75	4992	0.85	0.0030	1.03
HF-B2-U3	2.01	0.67	10.41	0.65	22.35	0.33	2071	1.16	3841	1.14	3815	0.90	0.0022	0.98
HF-B2-U3d	2.51	0.66	16.00	0.93	30.48	0.40	2098	1.01	4098	1.17	4540	0.97	0.0024	1.24
HF-U3-B3	2.39	0.36	12.45	0.73	25.65	0.32	2664	1.08	3708	1.02	4779	0.90	0.0027	0.93
HF-B3-U3	1.37	0.33	6.60	0.29	15.49	0.16	2345	1.09	3346	1.02	4505	0.94	0.0025	0.86
HF-B3-U4	1.65	0.32	9.14	0.51	20.32	0.17	2478	1.05	4098	1.01	5125	0.88	0.0031	1.04
HF-B4-U3	1.78	0.59	11.18	2.21	23.88	0.30	2885	1.04	4204	0.87	5381	0.90	0.0029	0.92
Average mean Error (μ)		0.46		0.99		0.25		1.1		1.08		0.95		0.84

ac

- The average error for predicting the moment capacity at cracking, yielding and ultimate carrying capacity is found to be 1.1, 1.08, and 0.95, respectively, which is considered acceptable.
- The concrete compression strain was predicted with an average error around 0.84.
- ACI 440.4R underestimated cracking and ultimate deflections which has a direct effect on the ductility predictions of unbonded and hybrid beams.

Finite Element Modeling

The trussed-beam analogy consists of four components: 1) Beam element (B21), 2) Truss element (T2D2), 3) Rigid Springs and 4) MPC connectors, are adopted and applied on the tested beams.

Finite Element Modeling- Unbonded and Hybrid beams

Finite Element Modeling (cont'd)

Designation	Pcr			P_u			Acr			Δ_u		
Designation	Exp	FE	μ	Exp	FE	μ	Exp	FE	μ	Exp	FE	μ
US-1-3	33	32.5	0.99	71	74	1.04	3.3	3.2	0.97	92.7	83.6	0.90
US-1-4	28	28.2	1.01	80	83	1.04	3.6	3.7	1.01	83.8	76.7	0.92
UF-1-3*	34	33.4	0.98	98	100	1.02	1.5	1.1	0.75	48.3	51.8	1.07
UF-1-3	33	31.4	0.95	80	70	0.88	2.5	2.3	0.93	49.0	51.6	1.05
UF-1-4	34	32.0	0.94	102	102	1.00	4.3	4.2	0.98	114.8	103.6	0.90
HS-U3-B3	45	44.0	0.98	111	111	1.00	5.3	5.0	0.94	132.3	136.4	1.03
HS-B3-U3	53	55.0	1.04	107	107	1.00	7.9	7.0	0.89	121.2	114.3	0.94
HS-B3-U4	47	49.9	1.06	138	132	0.96	4.8	4.0	0.83	108.7	100.8	0.93
HS-B4-U4	58	60.0	1.03	147	144	0.98	5.8	5.1	0.89	94.5	102.1	1.08
HF-U3-B3	62	62.3	1.01	133	138	1.04	6.6	6.1	0.93	80.5	78.2	0.97
HF-B3-U3	54	53.1	0.98	120	122	1.02	4.1	4.0	0.97	94.0	94.2	1.00
HF-B4-U3	59	61.2	1.04	147	158	1.08	5.1	5.4	1.06	78.7	82.0	1.04

Infrastructure Monitoring and Evaluation (**RIME**)

• The idealized truss-beam can be reliably used for a to predict deflection and loads for hybrid-CFRP beams at different stages of the loading.

- The model was able to predict the re cracking loads within an average mean error (μ) of 1 with 0.97 mean error for the unbonded beams, 1.03 for the hybrid-steel and 1.01 for the CFRP-hybrid beams.
- Similarly, an average mean error was observed to 1 for the FE predictions for ultimate load, in which the average error was calculated to be 1, 1.03 and 1.01 for the unbonded beams, Hybrid-steel beams, and CFRP- hybrid beams respectively.

ac

CONVEN

• For the deflection, FEM predicted the mid-span deflection observed at the first crack to be around 0.93 for all beams, in which hybrid-steel beams was predicted with an average error of 0.89 which is 10% lower than the average error calculated for hybrid -CFRP beams (0.99). For the ultimate deflections, the average error was 6% higher than the cracking deflection.

Finite Element Modeling (cont'd)

ACI 440 predictions for the ductility of unbonded and hybrid beams is not well established in the code which results in relatively higher average error when predicting conventional or other ductility indices

Designation	M_{cr}		M_{u}		$\mu_{\mathcal{Y}}$	μ_{zou}	
8	ACI 440/Exp	FE/Exp	ACI 440/Exp	FE/Exp	ACI 440/Exp	ACI 440/Exp	
US-1-3	0.88	0.99	0.90	1.04	0.51	2.44	
US-1-4	1.36	1.01	1.09	1.04	0.94	2.12	
UF-1-3*	0.99	0.98	1.05	1.02	0.56	2.13	
UF-1-3	1.06	0.95	0.91	0.88	0.63	2.15	
UF-1-4	1.26	0.94	0.99	1.00	0.27	2.24	
HS-U3-B3	1.16	0.98	0.92	1.00	0.33	2.34	
HS-B3-U3	1.00	1.04	1.08	1.00	0.77	1.95	
HS-B3-U4	1.18	1.06	0.94	0.96	0.32	2.11	
HS-B4-U4	1.22	1.03	0.85	0.98	0.41	2.32	
HF-U3-B3	1.08	1.01	0.90	1.04	0.73	2.06	
HF-B3-U3	1.09	0.98	0.94	1.02	0.40	2.34	
HF-B4-U3	1.04	1.04	0.88	1.08	0.45	2.22	
Average µ	1.11	1.00	0.95	1.00	0.53	2.20	

CONVENT

Conclusions

- 1) Hybrid steel-CFRP beams, utilizing CFRP as an unbonded element, is a robust prestressing system that can achieve extended service life due its inherent corrosion resistance, while maintaining a comparable serviceability performance compared with hybrid-steel beams.
- 2) Improvements in ductility and cracking load can be achieved with hybrid steel-CFRP prestressed beams when compared to hybrid-steel beams with effective reinforcement ratios equal or exceeding 0.06
- 3) ACI 440 predictions for the <u>ductility of unbonded and hybrid beams</u> <u>needs to be revisited for consistency</u> with conventional or other ductility indices. ACI 318 approach can be extended to hybrid beams.

CONVEN

ACKNOWLEDGMENTS

The authors wish to express their gratitude and sincere appreciation for the support received in part from two Tier 1 University Transportation Centers (UTC):

- 1) **RECAST** at Missouri University of Science and Technology (MUST);
- 2) C2SMART: Connected Cities for Smart Mobility toward Accessible and Resilient Transportation at New York University,

and

3) New Jersey Department of Transportation (NJDOT) through the Bridge Resource Program (BRP) Project.

The contents of this presentation do not reflect the official views or policies of the supporting agencies.

