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- General concrete: 25-50 MPa, 3-4 ksi 1B 2
- High performance concrete: 50-70, 10-13 Ksi MPa ! / z ‘ |
- UHPC compressive strength: ~150 MPa, 22 Ksi = : ‘

* Higher tensile and flexural strength (~10 MPa, 1300 Psi) for UHPC

e High dosage rate (of the order of 1%-3% by volume of steel fibers) increases the
ductility
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* Use of a low w/b, coupled with optimal particle packing, increases the durability
properties of UHPC

* Obtaining a very high compressive strength is not the only important criteria

 Compressive strength alone does not correlate to crack resistance, ductility, and
durability

 UHPC mixtures need to be designed for overall performance, including high
flexural, tensile, and shear capacity as well as long service life, in addition to a
higher compressive strength.



FSU Gas
UHPC: Advantage

Adequate control of shear cracking in conventional concrete
requires tightly formed rebar cages and stirrup arrangements;
increases the cost of the structural member

With the enhanced tensile strength of UHPC, the shear strength
is improved, and the tensile cracking reduced

The discrete steel fiber reinforcement included in UHPC allows
the concrete to maintain tensile capacity beyond the cracking
strain of the cementitious matrix

The increased ductility and crack resistance of UHPC reduces the
need for excessive shear reinforcement, and some of the
complexities of reinforcement placement can be avoided

UHPCs can significantly shorten the development length of
embedded discrete steel reinforcement
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Field connections

* Deck-level connection
between precast deck panels
and field casting of UHPC

connections

Small, simple connections
without requiring post—
tensioning or large volumes
of field—cast concrete
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COUNTY  Despite the cost, UHPC is still the economical solution ARIZONA STATE
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Deck and girder connections Connection between deck panels
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e Commercial UHPC mixtures cost > $9000/cy installed
* Need to use a very low w/b to obtain strengths > 150 MPa

— Large admixture demand and associated costs/other issues

* Need to be self-compacting for bridge deck connections

— Large admixture demand and other associated issues

* Need extremely fine powders to ensure particle packing and reactivity

— More admixtures at low w/b, several types of fine powders

* Need small aggregate sizes and high binder content

— Cost, shrinkage etc.
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A Rational material design procedure

e Rational binder design based on performance characteristics

— Selecting binder materials, admixtures and w/b for: (a) optimal packing of particles; (b)
necessary reactivity, and (c) self-compacting flow

e Rational aggregate class and quantity selection based on packing

— Select aggregate sizes and amounts (many UHPCs are basically mortars, but aggregates
provide dimensional stability and economy, if properly designed)

* Evaluation of material properties and conformance with design requirements

— Mechanical testing (compression, tension, flexural, fracture) and durability evaluation i

(resistance to freezing and thawing, chloride penetration)
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proportions for Starting materials'and proportions proportions for
flowability maximum
packing

Low water/binder ratio

Rheology (flowability) Packing of particles
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Material Amount (kg/m° (Ib/yd’)) Percent by Weight
Portland Cement 712 (1,200) 28.5
Fine Sand 1,020 (1,720) 40.8
1 Ib/yd® = 0.593 kg/m3 silica Fume 231 (390) 9.3
Ground Quartz 211 (35)) 8.4
Superplasticizer 30 (51) 1.2
Steel Fibers 156 (263) 6.2
Water 130 (218) 5.2
Mix 1 Mix 2
Material Ib/yd’ kg/m’ Ib/yd’ kg/m’
Cfement 1,235 733 978 580 Material Ib/y FE kg e
Silica Powder 388 230 298 177
Fine Quartz 1 308 183 503 131 Portland Cement 1,770 1,050
Fine Quartz 2 0 0 848 325 Sand 866 514
HRWR 55.5 32.9 56.2 33.4 Silica Fume 451 268
Sand 1,699 1,008 597 354 HRWR 74 44
Basalt 0 0 1,198 711 Steel Fibers 1,446 858
Steel Fibers 327 194 324 192 Water 303 180
Water 271 161 238 141

Water-Binder Ratio 0.19 0.19 0.21 0.21




Aggregate packing design

Dry-Rodded Unit Weight Test to
determine the maximum packing
density of each aggregate fraction™
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Compressible Packing Model for )
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Select optlmum proportlons based
on maximum packing density
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Materials selected

1 1 llllll' 1 [l Illllll [ 1 llllll' [l 1 Illlll' 1
100 — OPC (d,, = 11.2) -
. ’ / - —
| ---- Slag (d,, = 8.9) , 7 7 , » OPC-ASTM C150 cement
R god = -~ Fly Ash (gﬁo =17.9) . / :/ ’ . .
© — = Metakaolin (d,, =5.3) / / , - > Slag, Metakaolin (pozzolanic, and
g 1 —  Limestone (ds, = 3.0) ,' 4 , - alumina sources - to react with
Q 60— — - -Limestone (ds=1.5) // L/, - carbonates present in the system)
S 1 / , .
® 40— C ey _ » Limestone — 3.0 micron and 1.5 micron
2 median sizes. Fine limestone help with
3 dense packing of microstructure
» Fly Ash - pozzolanic, spherical particles
aid with workability

0.01 0.1 1 10 100
Particle Size (microns)
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 Aggregates are irregularly shaped — rounded, angular, flat, elongated.

* In a concrete mixture, aggregates cannot be placed one by one, so virtual
maximum packing density can never be achieved in practice.

* The packing density of aggregates increases with the degree of

compaction/vibration, the more you compact/vibrate, the more aggregates you
can add in a fixed volume.
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Mortar strengths
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Compressive Strength (psi)

S17.5M7.5L5

+——+——+ S47.5M7 5L5-f i

F17.5M7.5L5
F17.5M7.5Ls-f
M2oL 30
a—2—2 MaoL3o-f

I ' I ' I '
40 60 80
Time (days)

180

Compressive Strength (MPa)

Close to 150 MPa mortar strengths by

28 days for selected binders

* As high as 170 MPa after 90 days

curing depending on binder

composition and replacement level
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« 5 different aggregate classes were used corresponding to sizes - #4, #8, #10,
coarse sand with a d., = 0.6 mm, fine sand with a d,; =0.2 mm

e Steel fibers—d=0.6 mm, =13 mm.

o -

Mechanical Splitter used to obtain uniform gradation of particles



Scaled-up mixtures



Compressive Strength

* 2”7 x 4” cylindrical specimens were cored from 3” x 6”
concrete specimens to be used for the evaluation of stress-
strain response.

* Ends of the cylinders were ground to extremely low
surface roughness (< 0.007 inches).

Load Cell

* In-situ ultrasonic pulse velocity (UPV) testing was also e

Transducer

conducted during the compression test and velocity _
measurements were recorded at successive stress ' et

LVDT

intervals of 10 MPa I 7. Radial straig

gauge
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influence of fibers

i L I L I L I L L I L I L I L I L
N G'9'@F17.5|V|7.5L5"If
- R G'%F17.5M7.5L5'3f P

[ G-S-OF;sM;sLs
o-eo-oM, L,

— T T T T 1

0.5 -04 -03 -0.2 -01 0 0.1 0.2 0.3 0.4 0.5
Radial Strain (%) Axial Strain (%)

T I T I T I T T I T I T I T I T

| GoOF M, L1f 4
oo oM, L -1f ] -1.6 -1.2 -0.8 -0.4 0 0.2 0.4 0.6 0.8 1
, t Radial Strain (%) Axial Strain (%)

. Note that the strain axes are not the same

' 1 MPa = 145 psi or 0.145 ksi
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Flexural failure and the effect of fibers in

UHPC
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MARICOPA  Characterization of Crack Growth Mechanisms Using
COUNTY ARIZONA STATE

Digital Image Correlation (DIC) UNIVERSITY
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Strain, mm/mm Strain, mm/mm
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UHPC Flexural Design
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COUNTY  Flexural strength 2800 psi (20 MPa)

50% pp
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Palo Verde Bridge Project, November 2022




Palo Verde Bridge Project, November 2022
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Tension
§ 3 p=1.2
| ‘ | AR - Closed-Form
Uniaxial tension 2 Solutions
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(Mudadu et al., 2019)
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Envelope Moment-Curvature

ARIZONA STATE
UNIVERSITY

F N

Normalized Moment, m'
N

I |
Stage
41and 4.2

Ultimate
B:CO

Stage
42and5.2

b=200mm, h=600mm
pe=0.002, £=0.2, 0=0.9  ~
=420, f=35MPa

20 30 40 50
Normalized Curvature, ¢'

o “:O

B8 =04
2= =08
&6 u=1.0
=+ =12

2.00

N

N

o
|

1.00

0.50

Normalized Moment, M/M,,,

0.00

e e £,~0.003 at =36

. Rebar yielding

e n=0.4
£,=0.2%

33 e e @

i b=200

pu=0(Con. RC)

u=0.4, No rebar

b=200mm, h=600mm
pg=0.002, £=0.2, ¢=0.9
fy=420, f=35MPa

| ]

20 40

Normalized Curvature, (O/Q,,



MA Rq"com FS

COUNTY Back-calculation ARIZONA STATE

UNIVERSITY

Tensile Strain (mm/mm)
0 0.01 0.02 0.03 0.04
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UHPC BEAM TESTS

ARIZONA STATE
UNIVERSITY
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Test Setup

ALUM. BAR —\

2|_bll

LvDT
LOADING RIG
/ / UHPC BEAM

Il Iy2"

cL

'Il_bll

BI-@II

%’“ Arizona State
University

Total 6 LVDTs To Measure Complete Deflection Profile
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UHPC BEAM TESTS

ARIZONA STATE
UNIVERSITY

Load (Ibf)

Deflection vs Load Animation

Defiection (inches)

40
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Load (Ibf) Deflection (in)
First Crack 7952 0.0008
Max. Load 14300 0.23
Deflection by LVDT (mm) :
0 10 20 30 40 50 Post Crack Min. 6652 1.8
15000 — T T T T T T T T T
460
CRACK LOCALIZATION
12000
450
MULTIPLE CRACKING ZONE
g 9000 440 ;2:
@ 0 8
= FIRST CRACK 7 =
,_E 6000 ,E
420
Center Deflection (Trail A)
3000 . .
Center Deflection (Trail B) 10
0 N 1 N 1 N 1 N 1 0
0 0.4 0.8 1.2 1.6 2

Deflection by LVDT (in)

41



Hl:
MARICOPA
COUNTY

Simulation of beams 1 and 2

ARIZONA STATE
UNIVERSITY

Deflection (mm)
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200)
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Deflection (in)
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e Cost-effective UHPC designed through multi-level particle packing approach
> 150 MPa compressive strength and ~20 MPa flexural strength
* High ductility and durability

 Can be accomplished only by a robust, rational mixture design procedure and a
modified mixing regime

e Careful material design helps reduce UHPC cost
* New and improved design models for UHPC — integration into codes an standards
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Opportunities in use of FRC in Serviceability Based %l
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Structural Design Applications UNIVERSITY

The phenomenal growth of fiber reinforced concrete market is a key motivator
for addressing sustainability-based design

Economy, labor, time, materials characteristics and performance

Recent developments have played a significant role in developing documents
to showcase the performance of FRC materials

Design opportunities:
— Ductility, durability, crack width, stiffness, cracked section modulus.
— Shear

— A hybrid approach of combining reinforcement and fibers is the key to addressing
sustainability

— Minimum reinforcement requirements.
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e Ductility

* Toughening

 Improved tensile strength

* Increase level of energy absorption

» Fatigue life, impact/explosive loading
* Seismic resistance

* Steel work, labor, construction time.
 Corrosion damage

 Long-term repair and maintenance.
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ARIZONA STATE
UNIVERSITY

Design at the microstructure level will have a profound
t at the macro-structural level
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* Develop Sustainable Materials, analyze Solid Mechanics, material formulations,
Structural components, and Systems.

e  Full scale testing and Modeling in order to promote innovative and sustainable
construction systems.

e solutions for composite materials for transportation, water treatment facilities,
pipes, tunnel lining, thin sections, Structural Shapes

1) Up to 200 kips in Bending and 800 kips axial capacity

2) Failure mode modeling, Effect of hybrid reinforcement

3) Design tools for Tension, compression, and flexure.

4) A wide range from a 40 um fiber to a 4 meter tunnel segment

5) Long term serviceability by addressing permeability, creep, and corrosion.
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* Microstructure and Rheology Guided Design of Ultra-High Performance Binders
e Designing the ideal paste phase for UHPC to address
— Local materials and their combinations, low cost
— Particle packing methods, workability
— Experiments and simulations
* Rheological properties
* Conducted under a three tier approach, paste, mortar, and concrete

49



MARICOPA | FSU
county  Anticipated Benefits for ADOT Groups ARIZONA STATE

UNIVERSITY

 UHPC mix will accelerate construction time and increase the concrete’s durability, strength, ductility, and
longevity, making structures available for traffic use faster and producing cost savings

* Proprietary UHPC mixtures commonly used
* Tends to be very expensive and does not account for local raw materials
* Groups involved at ADOT included Construction-Materials Group, Bridge Group , Contracts and Specifications

Conventional Concrete UHPC
STRENGTH SERVICE LIFE 30%
Cement
150 100
I Paste 65%
80
100 0 Cement
Paste
40
50
— 20 70%
0 0 Aggregates
Regular Ultra-High Regular Ultra-High o
Concrete Performance Concrete Performance 35%

Aggregates

Concrete Concrete
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* Microstructure and Rheology Guided Design of Ultra-High-Performance Binders
— Microstructure packing
— Rheology of Pastes
— Selection Criteria
e Particle Packing Based Design of UHPC
— Compressible Packing Model
— Concrete Design Considerations
* Mechanical testing - Compression and Flexure
— Test results



Flexural Test Results of Strain Hardening UHPC Beams
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Midspan deflection, [in] Midspan deflection, [in]
0 0.04 0.08 0.04 0.08
6T | ' I ' I - | '
Size: 2"x2.5"x14" "1200 <1200

F17.5M7 5L5 mix

—o—e UHPC, VF =0%

UHPC, V§=1%

1

2

Midspan deflection, [mm]

* No post-peak response for the brittle unreinforced specimen

800

400

Load, [Ibf]

Load, [kN]

Size: 2"x2.5"x14"
M2oL30 mix

o—e—o UHPC, V§ =0%
UHPC, V§ =1%

800

Load, [lbf]

400

1 2

Midspan deflection, [mm)]

 Considerable non-linear response after the occurrence of the first crack with 1% fibers -,
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ARIZONA STATE

UNIVERSITY

Speckled beam

Set up for flexural Four-point bending test

p— b (] 9
e n - N

1

Nominal flexural stress, MPa
L

Maximum stress

First Crack
| Strength, BOP

0 oo >
DOOOO @GDOO
oo

O
O

O

Crack mitiation
Strength

Size: L O 0 oVe=1%
Mix: FML o ¢ oVi=3%

0 0.5 1
Midspan deflection, mm

1.5



b
MAR&COPA Tensile contribution of FRC to the Flexural ES
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e Can not fully replace the rebars, but can enhance their contribution

* The tensile strength in plain concrete is only about 10% of its compressive strength, so it is
primarily ignored in many engineering calculations such as in RC where only the
contribution of steel reinforcement is taken into account

Conventional RC FRC+Rebar=Hybrid RC(HRC)
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