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Introduction
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Ref: Ullah, Rahat, et al. "Ultra-high-performance concrete (UHPC): A state-of-the-

art review." Materials 15.12 (2022): 4131.
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Understanding UHPC Structural Behavior
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Overarching Goal
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Questions Addressed in Current Study

➢ Can we numerically predict fiber orientation coupled with UHPC flow?

➢ Can we use that description to quantitatively measure fiber orientation as an input for solid model from 

fresh UHPC flow behavior?

➢ Can we predict behavior of hardened UHPC from predicted fiber orientations by coupling the flow model 

to solid model?

Fiber Orientation 

Prediction in fresh state 

of UHPC

Validate with hardened 

UHPC mechanical 

behavior 
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Experimental Program: Nozzle-based Casting 
Process of UHPC

Ref: Gomaa, Shady. Corrosion of Steel Plate Girder Bridges and 

Rehabilitation Using UHPC. Diss. Rensselaer Polytechnic Institute, 2020.
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(Dimensions in mm)
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Modeling Fresh UHPC Flow
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Predicting Fiber Orientation
Jeffery’s equations
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Invariant-based optimal fitting closure approximation (Chung and Kwon, 2002)

𝐴𝑖𝑗𝑘𝑙
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Single phase fluid motion with Navier-Stokes Equation

Evolution of Orientation Tensor with time 

One-way coupling
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Modeling of Hardened UHPC

Lattice Discrete Particle Modeling (LDPM)
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Ref: Cusatis, Gianluca, Daniele Pelessone, and Andrea Mencarelli. "Lattice discrete particle model (LDPM) for failure behavior of concrete. I: 

Theory." Cement and Concrete Composites 33.9 (2011): 881-890.
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Modeling of Hardened UHPC
Lattice Discrete Particle Modeling for Fiber-reinforced Concrete (LDPM-F)
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Ref: Schauffert, Edward A., and Gianluca Cusatis. "Lattice discrete particle model for fiber-reinforced 

concrete. I: Theory." Journal of Engineering Mechanics 138.7 (2012): 826-833.33.9 (2011): 881-890.
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Linking Computational Models
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Predicted Fiber Orientation

Case 1 Case 2 Case 3
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Calibration of Fiber Orientation Factor for LDPM-F
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Numerical Validation of Experimental Predictions

Total Crack Opening [mm]

>10.01

Three Point Flexural Test for Slabs
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Numerical Validation of Experimental Predictions
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Direct Tension Test

Numerical Validation of Experimental Predictions
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Numerical Validation of Experimental Predictions
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Conclusions

✓ Modeling fiber orientation with the presented computational approach shows promise in prediction of hardened 

UHPC behavior from fresh state.

✓ Simulations for fiber orientation model show that given the significantly small volume and mass of fiber relative 

to its high aspect ratio and stiffness, it is reasonable to assume that fibers can be aligned by flow neglecting the 

contribution of fibers to the system momentum, i.e., the coupling term is negligible and thus, one-way coupling is 

reasonable.

✓ To better understand effect of fiber-fiber interactions as well as fiber-formwork interaction, explicit fiber flow model 

needs to be considered which is challenging!
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Thank You for Listening!

Questions?
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