

Development and Evaluation of a UHPC-based High-Friction Surface Treatment for Pavement and Bridge Surface Rehabilitation

Adam R. Biehl, Masters Student Kyle F. Maeger, PhD Student Prasad Rangaraju, Professor, PhD, PE, FACI Clemson University

> Research-in-Progress Session 2 March 25th, 2024

1. Introduction

- 2. Material Selection
- 3. Continuous Particle Packing
- 4. Surface Properties
- 5. Future Work

Introduction

Without HFST

Spring 2024 – New Orleans

With HFST

Substrate

<u>HFSTs</u>

 Recent FHWA studies estimate that HFST's "reduce wet crashes by 83 percent and total crashes by 57 percent (FHWA 2023)"(Merritt, David K. et al. 2020)
Average Crashes Per Million Vehicles

*Timespan for collection of data varied by section from 2003 to 2016, data is normalized by traffic count to account for this

Introduction

<u>UHPCs</u>

- Class of cementitious composite characterized by its high compressive strength, enhanced toughness, high fluidity, and high bond strength.
 - Typical Composition: Portland Cement, Silica Sand, Steel Fibers, Silica Fume, High Range Water Reducer, and a low w/b ratio.

Necessary for HFST binder to be effective:

- High Bond Strength \checkmark
- Low Shrinkage/Cracking √
- High Abrasion Resistance √ Good for HFST Binder:
- Ultra-High Compressive Strength √

Materials

- Method of densely arranging particles.
- Modified Andreasen and Andersen Method

$$CPFT = \frac{d^q - d^q_{min}}{D^q_{max} - d^q_{min}} * 100$$

• For UHPC an optimal q-value is between 0.2 and 0.37

Mix Proportions of UHPC

	SF1-3.5	SF1-4.5	SF2-3.5	SF2-4.5	SF3-3.5	SF3-4.5
C/CM	0.8	0.8	0.8	0.8	0.85	0.85
SF/CM	0.2	0.2	0.2	0.2	0.15	0.15
W/CM	0.2	0.2	0.2	0.2	0.2	0.2
S/CM	0.7	0.7	0.6	0.6	0.6	0.6
PF/CM	0.4	0.4	0.4	0.4	0.5	0.5
HRWR/CM	0.035	0.045	0.035	0.045	0.035	0.045
CB/CM	3.0	3.0	3.0	3.0	3.0	3.0

C: Cement

SF: Silica Fume

W: Water

S: Sand

PF: Pond Fines

HRWR: High Range Water Reducer

CB: Calcined Bauxite

CM: Cementitious Material

Composition by Volume

<u>UHPC</u>

Intermixed CB

Modified Flow Table Test

Flow Table Test

Pull Off Tensile Strength

SCDOT HFST Spec: 250 psi at 7 Days

7 Day Results (psi)

	UHPC	Intermixed	% of Binder
SF1-3.5	424	252	60%
SF1-4.5	415	284	68%
SF2-3.5	329	277	84%
SF2-4.5	303	253	83%
SF3-3.5	308	231	75%
SF3-4.5	323	193	60%
Epoxy	315		

<u>UHPC</u>

Intermixed CB

Surface Method Comparison

SMART CENTER

urtainable Material/ Research and Technology Center

GLENN DEPARTMENT

American Concrete Institute Always advancing

Surface Method Comparison

Macrotexture of Surfaces (MPD)

significantly different

- UHPC has the potential to act as a HFST binder, but additional testing is needed.
- Continuous Packing Methods provide comparable results between mixes.
- Intermixed CB results in a decreased bond strength.
- UHPC and Epoxy provide comparable bond strengths.
- Intermixed CB Mixes provide comparable MPD to epoxy when the correct surface retarder is used.

Ongoing and Future Work

Thin-Layer Shrinkage

• Continuous Packing

Spring 2024 – New Orleans

- Abrasion Resistance
- Shrinkage
- Discrete Packing
 - Bond Strength
 - Shrinkage
- Shrinkage
 - Shrinkage + Crack Risk
 - Fiber Addition
- Surface Study
 - Three-wheel polishing testing
 - LTS + DFT

Abrasion Testing

Acknowledgements

Thanks to:

- SCDOT for sponsoring this research
- National Brick Research Center for testing assistance
- Companies that provided sample materials for this work
 - Argos, Sika, Brickform, SpecChem, Ferroglobe, Elkem, Martin Marietta, Vulcan, FX minerals, Sunrock, Levy, Skidabrader

Mix Procedure

- 20 Quart Tabletop Hobart Mixer
 - Low Speed: 40 rpm
 - Medium Speed: 75 rpm
 - High Speed: 135 rpm

