

Advancing Sustainable Construction: Harnessing Louisiana's Local Resources for Low-Carbon Concrete

Andrew Callender, Khalilullah Taj, Dr. Yen-Fang Su

Department of Civil & Environmental Engineering Louisiana State University and A&M College

Carbon Emissions & Limestone Calcined Clay – LC3

- ACI involvement led to ACI CODE 323 Low Carbon Concrete Code
- Limestone Calcined Clay LC3 (Scrienver et al.,2018)
 ➢ Reduces CO₂ emissions by 40%
 - Limestone and Gypsum already used at plants, however Calcined Clays are not widespread

ysu@lsu.edu, acall19@lsu.edu

Clays

- Clays
 - Must have kaolinite present
 - Economical if low grade kaolinitic content
 - Characterized as either Alfisols or Ultisols
- Sourcing Clays
 - 6 clay samples taken across Louisiana
 - The further North, the more kaolinite found in clays

Limestone & Oyster Shells

- Limestone
 - CaCO₃
 - Supplementary Cementitious Material in LC3 blend
- Oyster Shell
 - Composed mostly of CaCO₃ and impurities
 - 10 million tons of mollusk waste per year (*Popović, et. al. Appl. Sci. 2023*)
 - 474.5 million Oysters produced in Louisiana alone (*Louisiana Department of Health*)
 - Waste deposits can become harmful to Marine Environments
 - Compared to limestone less carbon emitted since the limestone does not need to be quarried

Clinker Grinding Times

- Clinker
 - Clinker was delivered grinded but not fine
 - Multiple grinding times tested to determine optimal grind time
 - 30 minute was found to have acceptable strength and efficient timing

1-Day Compressive Strength OPC

Thermogravimetric Analysis

- Conducted TGA for 6 different clay to determine kaolinitic content
- Analyze weight percent loss from 400-650°C
- Range: 4%-20% kaolinite weight
- Average: 13%
- Selected clay is ~20%

Material Characterization

- Particle Size Distribution
 - Limestone and Oyster Shell have similar PSD
 - Clay is the finest material (optimizes packing)
 - Clay was grinded for only 1 minute after drying
 - Clinker was grinded for 30 minutes

• XRF

- Determined oxides present in Ingredients
- Oyster shell and limestone oxides are very similar
- Clinker has lower lime than typical

Diameter (µm) Chemical Components of Ingredients

Oxides	Calcined Clay	Clinker	Oyster Shell	Limestone
CaO	0.337	54.014	86.392	93.365
MgO	2.83	8.252	2.251	3.534
SiO ₂	69.306	25.594	4.421	1.613
Al ₂ O ₃	21.8	5.934	1.764	0.739
K ₂ O	1.252	0.926	0.317	0.268
Fe₂O₃	2.891	2.148	0.477	0.122
Ti	0.269	0.148	0.034	0.002
Na₂O	0.774	-	1.27	-
P ₂ O ₅	0.34	-	-	-
S_2O_3	-	2.614	1.955	-
Total	99.8	99.63	98.881	99.643

Mix Design

• OPC

• Binder = 95% Clinker & 5% Gypsum

• LC3

• Binder = 50% Clinker, 30% Calcined Clay, 15% Limestone, & 5% Gypsum

• OC3

- Binder = 50% Clinker, 30% Calcined Clay, 15% Oyster Shell, & 5% Gypsum
- Mortar Mixes
 - Binder:1
 - Sand: 1.5
 - W/B: 0.40

Compressive Strength

- OPC is the strongest at each day
- 1 Day results show OPC hydrated the quickest
- LC3 & OC3 gained strength slower
- At 14 & 28 days expect OC3 & LC3 to be stronger than OPC

Conclusion

- Summary
 - Selected Clays
 - Performed TGA, PSA, XRF, & CST
 - Found large differences in 1-day strength between OPC and clay blends
 - Samples had similar strength as 7 days due to clinker particles being too large
- Further Work
 - Source more Clays
 - Conduct Activation Testing on Limestone and Oyster Shell
 - Monitor strength development at 14, 28, and 90 days
 - Conduct the durability testing
 - Research effectiveness of partially substituting Limestone with Oyster Shell

Funding Agencies:

Convention:

American Concrete Institute

Always advancing

<u>ysu@lsu.edu, acall19@lsu.edu</u>

Thank you for your attention!

Andrew Callender, acall19@lsu.edu

Laboratory of AIM³S for Future

Appendix

Sample	Clinker	Oyster Shell	Limestone	Clay
D ₁₀	2.36732161	3.11982	5.72212	2.20399
D ₅₀	25.17572288	27.9	29.3	9.6
D ₉₀	85.0075504	116.2	71.1	38.9
Mean	37.1	44.2	35.1992	15.7

PSD (microns)

Fig. 1 Hanein, T., Thienel, KC., Zunino, F. *et al.* "Clay calcination technology: state-of-the-art" *Mater Struct* **55**, 3 (2022).

