Al Based Surrogate Model for Digital Twins for Structural Health Monitoring

Jan Cervenka¹, Radek Marik², Drahomir Novak³

¹Cervenka Consulting s.r.o.

²Faculty of Electrotechnic Eng., Czech Technical University, Prague

³Technical Univ. Brno, Czech Rep.

Content:

- Digital Twins
- Application of Machine Learning in Digital Twins for Structural Health Assessment
- Uncertainties and accuracy of AI based surrogate models
- Application to the monitoring of existing bridges

PROPERTIES OF DIGITAL TWIN

Short-term performance:

- static/dynamic/cyclic loadings
- non-linear material behaviour (concrete cracking, rebar yielding)
- accidental scenarios

•

Long-term performance:

chloride attack/carbonation

CONVENTION

- reinforcement corrosion
- creep and shrinkage
- ASR/AAR mechanisms
-

ANN-based surrogate model

Polynomial Chaos Expansion (PCE)-based surrogate model

$$Y = \mathcal{M}(\mathbf{X}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^M} \boldsymbol{\beta}_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\mathbf{X})$$

- polynomials is orthonormal with respect to the joint distribution function (Hermite polynomials)
- M represents size of stochastic model (Curse of Dimensionality)
- Efficient algorithm for Sparse PCE was employed

 Least Angle Regression (LAR).

CONVENTION

Bridge example 1: small railway bridge, Kostomlaty, Czech Republic

- spans: 2 x 5.1 m
- construction finished in 1905, reconstruction 1942
- composite concrete steel structure with imbedded I steel beams
- longitudinal cracks with water seepage and corrosion

Application example 2: Vogelsang Bridge, Esslingen, Germany

- 8 sub-structures with 3 different construction types constructed between 1971 – 1973, total length 595 m
- measurement and analysis of 2 spans (13.8 + 13.2 m)
- structure type: continuous non-prestressed
 RC beam with the height of 0.6 m
- Ioad: road traffic and environmental loads

Bridge Monitoring System

- strain gauges coupled with laser range rangefinder
- suitable for loads above 3.5 tonne
- installation on the underside of the deck
 - \rightarrow no traffic disruption
- strain gauges calibrated before measurements
- provider: iBWIM technology by Petschacher Consulting

Digital Twin Model for Bridges

Vogelsang Bridge: 150-years-long Chloride Attack, ATENA modelling

Digital Twin Model for Bridges

Durability Assessment: Vogelsang Bridge

ECoV method (fib MC 2010):

coefficient of variation:

$$V_R = \frac{1}{1.65} \ln \left(\frac{\boldsymbol{R_m}}{\boldsymbol{R_k}} \right)$$

global resistance factor:

 $\gamma_R = \exp(\alpha_R \beta V_R) \cong \exp(3.04 V_R)$

esign structural resistance:

$$R_{d,ECOV} = \frac{R_m}{\gamma_R \gamma_{Rd}}$$

 $E_d < R_{d,ECoV}$

NCRETE

design check:

ONVEN

d

 structure is sensitive to corrosion due to the bending failure mode mechanism at peak load

Bridge Utilization

Vogelsang Bridge

53

TwinBridge platform – application example

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

TwinBridge

• Weight (t)

75

TwinBridge platform – operation example

ANN for parameter identification analysis & evaluation

lection [m]

peak deflection (m

peak load [MN

ANN for parameter identification analysis & evaluation

	CNN	Dense NN	LSTM NN	L-Maen	L-A-Maen	F-Maen
E_c	0.221	0.169	0.187	0.136	0.152	0.177
F_c	0.480	0.424	0.394	0.326	0.272	0.541
F_t	0.378	0.348	0.264	0.317	0.207	0.271
G_f	0.238	0.251	0.237	0.219	0.204	0.334
Mean	0.329	0.298	0.271	0.250	0.209	0.331
Model params count	23904	71204	6762	12308	2600	33028
p_e	0.013	0.005	0.055	0.033	0.184	0.009

Table 4.4: Full curve: test (A-dataset) (100 samples)

	CNN	Dense NN	LSTM NN	L-Maen	L-A-Maen	F-Maen
E_c	0.121	0.068	0.105	0.150	0.087	0.065
F_c	0.320	0.310	0.309	0.334	0.283	0.347
F_t	0.241	0.156	0.245	0.272	0.258	0.224
G_f	0.185	0.146	0.174	0.262	0.181	0.202
Mean	0.217	0.170	0.208	0.255	0.202	0.210
Model params count	23904	71204	6762	12308	2600	33028
p_e	0.019	0.008	0.071	0.032	0.190	0.014

Table 4.8: Full curve: test (B-dataset) (400 samples)

ANN types:

		layers	params
Conventiona	Il models:	-	-
CNN:	convolution neural network,	7	23 904
Dense NN:	fully connected (dense) neural network,	5	71 204
STM NN:	long short-term memory neural network,	6	6 762

Explainable models:

L-Maen: LSTM Maen L-A-Maen: LSTM-Attention Maen F-Maen: Feedforward Maen

Figure 3.6: LSMT-Attention Maen (L-A-Mae

Figure 3.4: Feedforward Maen (F-Maen

	CNN	${\rm Dense}~{\rm NN}$	LSTM NN	L-Maen	L-A-Maen	F-Maen
E_c	0.119	0.066	0.111	0.103	0.101	0.063
F_c	0.331	0.304	0.336	0.317	0.296	0.322
F_t	0.231	0.138	0.230	0.239	0.208	0.184
G_f	0.179	0.128	0.168	0.170	0.173	0.138
Mean	0.215	0.159	0.211	0.207	0.194	0.177
Model params	23904	71204	6762	12308	2600	33028
p_e	0.019	0.009	0.070	0.039	0.198	0.017

Table 4.12: Full curve: test (C-dataset) (1000 samples)

ANN for parameter identification analysis & evaluation

ANN for surrogate engineering model – analysis & evaluation

Deflection [m]

Example: Surrogate model to estimate structural response to given temperature history Accuracy of predictions

Evatuation of bridge utilization, steel stresses crack opening from monitoring data

Conclusions:

- Digital Twin combines monitoring with numerical simulation to provide unique insight into the monitoring data
- Durability model used for long term prediction of structural behavior.
- ANN and ML used for identification of numerical model parameters
- ANN and ML used for real-time mapping of monitoring data to useful engineering quantities for bridge reliability assessment

Thank you for your attention

The results were obtained with partial support by the Technology Agency and Ministery of Transport of the Czech Republic from the project:

CK03000023 "Digital Twin for Increased Reliability and Sustainability of Concrete Bridges", from Doprava 2020+ Program.

The financial support is greatly appreciated.

Jan Červenka jan.cervenka@cervenka.cz

