

Discussion of FRP Design Codes and Guidelines in Brazil and South America

Daniel Cardoso

Department of Civil and Environmental Engineering Pontifical Catholic University of Rio de Janeiro (PUC-Rio) <u>dctcardoso@puc-rio.br</u>

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

South American Codes for Concrete Structures

Pretty modern codes... of course, there are exceptions...

For FRP RC, only Brazil has active TCs...

Argentina 2024

Peru 2020

NORMA CHILENA NCh

Colombia 2010

Chile 2008

Use of FRP RC in South America

Before 2018

1 manufacturer | bar used in soft-eyes and eventually on industrial projects

In 2018

Many suppliers bringing bars from Russia

After 2018

Pandemic: cost of steel bars increased Ukraine War: reduction of importation from Russia Growth of national companies Limited knowledge and qualified personnel Main application: grids for slabs-on-grade but we see even in lintels!

Haizer Building Solutions

Timeline

2015: Installation of the IBRACON/ABECE TC 303

Non-conventional materials for concrete structures WG3: Concrete structures with non-conventional internal reinforcement

- **2019**: WG3 Activities restarted after a long break
- **2021**: Manual of Practice published
- **2022**: Reactivation of ABNT TC CE-002 124.026 – Structural design CEE 193 – Material specification, qualification and tests

Estruturas de Concreto Armado com Barras de Polímero Reforçado com Fibras (FRP) CT 303 - Comité IBRACON / ABECE: Uso de Materiais não convencionais para Estruturas de Concreto, Fibras e Concreto Reforçado com Fibras

Concreto Armado com

Main Non-Technical Challenges

Few researchers involved with FRP composites for concrete

Limited technical data available in the country

Lack of knowledge of the community about composites

Industry flagship: grids and dowel bars (even less data)

Variability of materials graphene polyester

Courtesy: Luiz Otávio (UERJ)

Concrete strength up to 50 MPa, w/ or w/out fibers

VE or EP-based bars with glass or basalt fibers

Bars with surface treatment meeting minimum physical and mechanical requirements

Combination of steel and FRP

Temperatures below 80 °C

- <u>No</u> pre-stressing

- <u>No</u> bundles
- <u>No</u> hollow bars or w/ split cross-

section (grids)

- <u>No</u> fire, earthquake, impact or other exceptional limit states
- <u>No</u> waffle slabs, flat slabs, punching shear

Material Specification, Qualification and Testing (coordinated by Prof. Nadia Forti)

1 Main document with specification and minimum requirements

12 Parts describing physical and mechanical characterization tests

Original aspects:

Tg and degree of cure for qualification, but not for regular quality control... ... Instead: water absorption and apparent longitudinal shear

Tensile tests with reduced free and anchorage lengths

Concrete strength and cover minimum requirements

Aggressive Environment Class	Description	w/c ratio	Minimum Concrete characteristic strength (MPa)	Minimum concrete cover (mm)
CAA-FRP-I (weak)	 Structures not exposed to the external environment (dry) Structures in contact with water or soil with low sulfate content) 	≤ 0.60	20	30 (20 for slabs)
CAA-FRP-II (moderate)	 Structures in contact with water or soil with moderate sulfate content Structures in contact with sea water. 	≤ 0.50	30	40
CAA-FRP-III (Strong)	- Structures in contact with water or soil with a high sulfate content.	≤ 0.40	45	55

Partial factors

R1: don't change load factors R2: don't change concrete strength factor R3: β > 3.8

Load:
$$F_d = \frac{\gamma_n}{\left(\gamma_g F_{gk} + \gamma_q F_{q1k} + \gamma_q \sum_{j=2}^n \psi_{0j} F_{qjk}\right)}$$

Adjustment factor to account for the consequences of a brittle failure (=1.1)

Resistance:

$$f_d = C_E \frac{f_k}{\gamma_{FRP}}$$
 =1.3 $F_{Rd} = \text{function}(f_d)$

Uncracked x cracked stiffness in structural analysis Recommendations for beams and slabs

Courtesy: Vitor Carvalho (PUC-Rio)

Strategies for ductility concrete confinement use of fibers (in compression) hybrid reinforcement FRP bars in compression

Courtesy: Vitor Carvalho (PUC-Rio)

ULS-Bending

*Limitations for hybrid reinforcement and multiple layers

ULS-Shear

$$V_{Sd} \leq V_{Rd2} \qquad V_c = 0.6 f_{ctd} b_w x_{II}$$

$$V_{Sd} \leq V_{Rd3} = V_c + V_f$$

$$V_f = 0.9 d f_{fVd} \left(\frac{A_{ft}}{s}\right)$$

SLS-Deflection

Bischoff method (similar to ACI) Lower moment at cracking Long-term: steel in compression

$$\alpha_f = \frac{\xi(t) - \xi(t_0)}{1 + 50\rho_s'}$$

SLS-Cracking Model Code 2010 approach Accounts for fibers

$$w_k = \frac{2}{E_f} \left[1.5c_{nom} + \frac{1}{4} \frac{f_{ctm}}{\tau_b} \frac{\phi}{\rho_{ef}} \right] \left[\sigma_f - \frac{1}{2} \frac{f_{ctm}}{\rho_{ef}} \left(1 + \frac{E_f}{E_{cs}} \rho_{ef} \right) \right]$$

Concluding Remarks and Next Steps

- The Brazilian code results from a 5- to 6-year work.
- Modern code, original in many aspects, but not perfect...
- Code will be really important to spread the knowledge about FRP RC and its safe use
- TC303 IBRACON will reunite after July 2024 to continue the work (grids, dowel bars, fire, punching shear, etc)

Merits of a small group with very limited resources, but focused, highly motivated and hardworking.

OBRIGADO!