Structural health monitoring data analysis on two cable stayed bridges in the UK & China

Prof. Mike Forde & Dr Donghui Xu, University of Edinburgh, UK Dr Xiang Xu, Southeast University, Nanjing, China Dr Antonio Caballero, Screening Eagle AG, Zurich, Switzerland

Contents

- Background
- Temperature field analysis
- Traffic induced deflections
- Conclusions

Contents

- Background
- Temperature field analysis
- Traffic induced deflections
- Conclusions

Background

Long-span bridges significance

- At critical locations, providing vital links
- High cost to construct and maintain
- Extensive social impact closure due to structural issues

Long-span bridges issues

- Ageing bridges 42% of bridges are 50+ years old in the US
- 7.5% of bridges are structurally deficient in the US
- Truss end link failure discovered on the Forth Road Bridge, Edinburgh, UK in 2015

Background

Project Ambition: Big Data & Data Centric Engineering: The Forth Bridges

Aim:

Develop this new holistic structural health monitoring SHM strategy on the Forth Bridges and then extend the research via the Yangtze River Bridge - towards the "International Living Bridge Laboratory" aci

CONCRETE

CONVENTION

CRETE

(a) The Queensferry Crossing in the UK (b) The Nanjing Dashengguan Yangtze River Bridge in China

- The NDB, formerly known as the Third Nanjing Yangtze River Bridge, opened in 2005
- Vital transportation link crossing the middle and lower Yangtze River & connecting Nanjing City and its Liuhe District.
- It is a double-steel-tower cable-stayed bridge with a main span of 648m.
- A unique feature of this bridge is its 215m-high arc-shaped steel tower first-of-kind among such long-span bridges.
- Superstructure deck: 3.2-m deep x 37.5-m wide orthotropic steel box girder 3 traffic lanes in each direction.

Background

Inspections

Visual Inspection

Structural Health Monitoring (SHM)

 Using periodically sampled response measurements to monitor changes to the material and geometric properties of engineering structures. Non-destructive Testing (NDT)

The difference between NDT and SHM is the sensors in the SHM systems are permanently installed on the structures to monitor environmental factors, external loadings and structural responses.

CONVEN

Structural health monitoring (SHM) Sensor Type	Queensferry Crossing	Forth Road Bridge
Accelerometers	102	-
Air Temperature Sensors	13	2
Anemometer	11	2
Asphalt Temperature Sensors	40	6
Barometers	2	1
Bearing Gauges	16	8
Bearing Pressure Sensors	-	8
Concrete Deck Temperature Sensors	70	-
Concrete Tower Temperature Sensors	46	-
Corrosion Sensors	360	-
Displacement Transducers	32	48
Dynamic Weigh-in-Motion Sensors	96	64
GPS Location	21	10
Rainfall Gauges	2	1
Relative Humidity Sensors	12	34
Strain Gauges	887	128
Stay cable temperature sensors	56	-
Steel Surface Temperature Sensors	158	32
Main Suspension Cable Acoustic Monitoring	-	116
Tiltmeters	48	16

Sensors on bridges

- Various original sampling rates (e.g. 1Hz, 10Hz)
- Recorded sampling rate: 1Hz
- Data size
 - FRB: 24GB/month
 - QC: 200GB+/month

Number of sensors	Bridge
~2,000	Queensferry
~192	Forth Road Bridge
~1,000	Yangtze Bridge

Contents

- Background
- Temperature field analysis
- Traffic induced deflections
- Conclusions

Sensors layout

Sensors layout

Yangtze River Bridge

CONCRETE CONVENTION

Yangtze River Bridge – finite element model

Temperature field – concrete deck

Figure 6.12: Temperature features of the concrete deck

Temperature field – Tower temperature difference

QC: thermal centre tower

CT

Temperature difference (Max)

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 2021 Time Distribution of temperature difference

Temperature field – Tower temperature difference

DDB: thermal centre tower

Extreme temperature estimation – GPD

The standard cumulative distribution function (CDF) of the GPD is defined by:

$$G(x; \sigma, \xi) = \begin{cases} 1 - (1 + \xi \frac{x}{\sigma})^{-1/\xi} & \text{for } \xi \neq 0\\ 1 - exp(-\frac{x}{\sigma}) & \text{for } \xi = 0 \end{cases}$$

ETE

Calculate the mean excess

Calculate cumulative probability:

$$p=(1-P_r)^{1/N}$$

Calculate the extreme value
$$x_p$$

 $x_p = u_0 + \frac{\sigma}{\xi} \left[\left(\frac{n}{N_u} (1-p) \right)^{-\xi} - 1 \right]$

CONVENTION /

$$e(u) = \frac{1}{N_u} \sum_{i=1}^{N_u} (x_i - u) = \frac{\xi}{1 - \xi} u + \frac{\sigma}{1 - \xi}$$

Plot the MEF Plot the mean excess e(u) against the threshold u. **Identify the threshold** In the GPD, the mean excess function is linear in the threshold for a suitable choice of threshold. The point where the plot starts to appear linear can be considered as a good threshold.

Extreme temperature estimation – Tower

(a) Inner & outer temperature difference on (b) MEF plot for tower temperature differcentre tower ence

Figure 6.23: Tower inner & outer temperature difference analysis

TOWER SECTION SCALE 1:100

- Estimated maximum temperature difference in 120 years is 4.66°C
- Not specified in Eurocode
- Chinese Design Code, 5°C

THE WORLD'S GATHERING PLACE FOR ADVANCIN

Thermal-deflection relationship

- Displacements oscillate in a higher frequency compared to temperature
- High frequencies due to dynamic loads need to be separated from the signal

ac

RETE

Thermal-deflection relationship

Table 7.2: Thermal-induced deflection predictions data samples (part 1)

Time	Sdeck_bottom (°C)	Sdeck_top (° <i>C</i>)	cabletem lowerend (°C)	cabletem upperend (°C)	Sdeck soffit (°C)
15:10	14.505	14.971	13.778	15.845	14.304
15:20	14.505	14.978	14.003	15.875	14.327
15:30	14.510	14.988	14.250	15.894	14.367
15:40	14.520	15.001	14.347	15.901	14.408
15:50	14.535	15.016	14.565	15.958	14.464
16:00	14.555	15.032	14.429	15.990	14.488
16:10	14.571	15.049	13.931	15.982	14.453
16:20	14.574	15.063	13.601	15.935	14.391
16:30	14.565	15.075	13.538	15.854	14.328
16:40	14.547	15.084	13.338	15.772	14.254

Table 7.3: Thermal-induced deflection predictions data samples (Part 2)

Time	cdeck_1 (° <i>C</i>)	cdeck_2 (° <i>C</i>)	cdeck_3 (° <i>C</i>)	cdeck_4 (° <i>C</i>)	cdeck_5 (° <i>C</i>)	GPS (mm)	gps wavelet (mm)
15:10	16.575	15.564	14.728	14.460	14.266	-0.065	-1.734
15:20	16.595	15.583	14.754	14.469	14.263	0.343	-1.603
15:30	16.606	15.602	14.779	14.480	14.297	4.730	-1.542
15:40	16.611	15.620	14.803	14.492	14.346	-2.684	-1.526
15:50	16.614	15.637	14.825	14.506	14.397	3.921	-1.526
16:00	16.617	15.657	14.846	14.522	14.429	-3.585	-1.521
16:10	16.618	15.674	14.867	14.540	14.390	-1.843	-1.491
16:20	16.610	15.691	14.887	14.558	14.307	1.209	-1.419
16:30	16.583	15.707	14.907	14.575	14.247	-10.630	-1.285
16:40	16.532	15.722	14.926	14.590	14.180	-9.717	-1.071

Contents

- Background
- Temperature field analysis
- Traffic induced deflections
- Conclusions

Queensferry Crossing traffic flow

- 2 GPS stations installed at the south midspan
- The simulated deflections show similar pattern as the monitored data

Traffic induced deflections – predictions

Contents

- Background
- Temperature field analysis
- Traffic induced deflections
- Conclusions

Conclusions

- Temperature difference should be considered in the analysis for concrete sections
- Extreme temperature difference analysis reveals that the extreme estimation for bridge tower thermal load is close to the Chinese Design code - A revision of Eurocode in this part should be considered.
- LSTM is efficient in mapping the relationship between traffic attributes and deck deflections - In practical use, the model can be first trained on simulated data and then calculate the actual deflections at any locations of interest by being provided with real WIM data.
- LSTM demonstrates robust predictive capability on temperature-deflection relations even with time lag between them.

Thanks! m.forde@ed.ac.uk d.xu@ed.ac.uk **Acknowledgements** Data Funding Funding & Ideas HERIOT WATT UNIVERSITY THE UNIVERSITY of EDINBURGH SCREENING **Data-Driven** EAGLE TRANSPORT SCOTLAND nnovation COMHDHAIL ALBA Part of the Edinburgh & South East Scotland City Region Deal CONVENTION

STRUCTURAL FAULTS + REPAIR-2024

Abstract deadline: 30th April 2024

aci) CONCRETE

CONVENTION

www.structuralfaultsandrepair.com

European Bridge Conference-2024

Abstract deadline: 30th April 2024

www.structuralfaultsandrepair.com

3-Day Conference & Exhibition 11-13 June 2024 venue: The Royal Society of Edinburgh

George Street, Edinburgh EH2 2PQ, Scotland