

The Role of Sugarcane Bagasse Ash as a Supplementary Cementitious Material on the Mitigation of Temperature Crossover Effect

Research in Progress

ACI Spring Convention 2024

Husam H. Elgaali

BACKGROUND

Lyles School of Civil Engineering

Introduction > Objectives > Materials/Methods > Results/Discussion > Conclusions

Problem/Issue

Currently ...

Cement Production

- Stages of production and transportation.
- How to *decrease* carbon footprint?

Solutions ...

 Supplementary cementitious materials (SCMs) can be used as a partial cement replacement, reducing the carbon footprint of concrete.

- **Coal fly ash** is one of the most used SCMs.
- By-Product of coal-combustion energy generation

However, ...

Outlook indicates a
 decrease in coal production and availability.

Future Work

CONVENTION

 Fly Ash is becoming a limited resource.

Alternative Solutions ?

Alternative Solutions

- Biomass Ash can serve as an alternative Supplementary Cementitious Material (SCM).
- What is Biomass Ash?
 - "Ash is one of the by-products generated during biomass burning." [2]
 - "Agricultural biomass ash is a waste material produced by incineration of residue from fields after harvesting crops." [3]

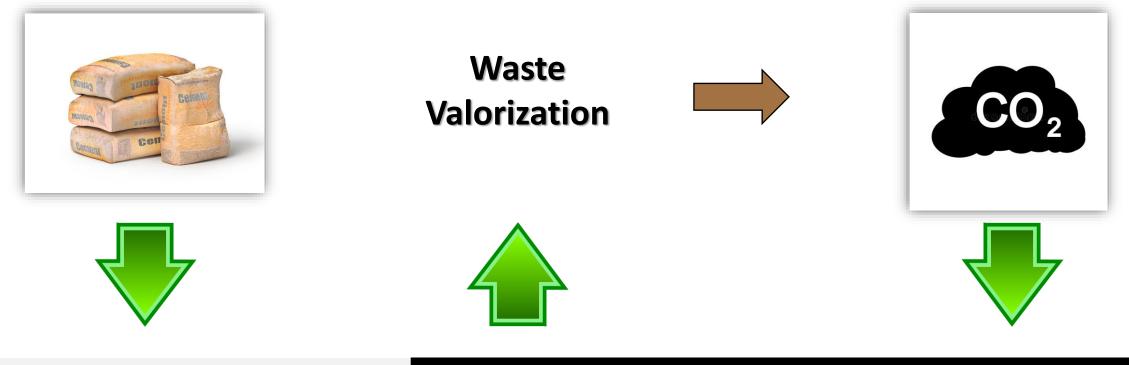
• Examples of Biomass Ash:

- Wood
- Corn Husk
- Various Agriculture Crops
- Sugar Cane Bagasse

Sugar Cane Bagasse Ash (SCBA)

Sugar Cane Bagasse

Thermal Energy Plant

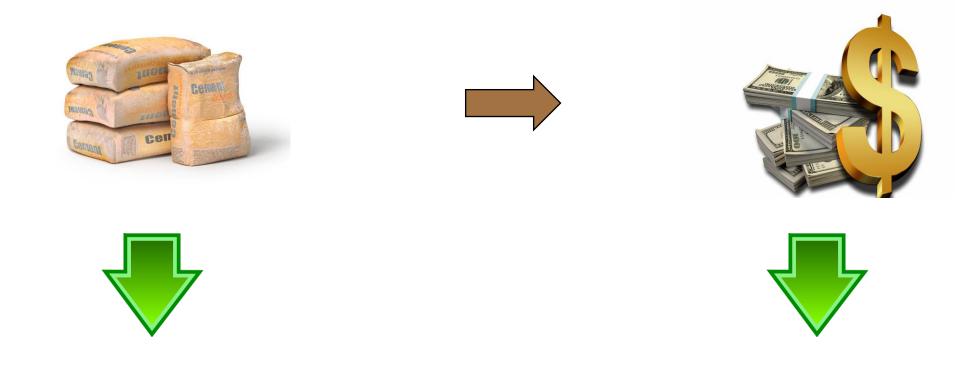

Sugar Cane Bagasse Ash (SCBA)

- Pozzolanic Material
- Siliceous Composition
 [4], [5], [6]

- "Recent estimation found the global sugar crop acreage is around 31.3 million hectares "^[5]
- One ton of bagasse can generate approximately 25–40 kg of bagasse ash. ^[5]

Environmental Benefits

- Lower CO₂ emissions from concrete due to a lower amount of cement use;
- SCBA is currently treated as a waste-product and ends up in land fill;
- SCBA is carbon neutral and will be always be produced.



Economical Benefits

• Cement is an expensive material, lowering the amount of cement used will

decrease the cost of concrete;

• SCBA has a potential to have its own market, if proven to be a useful SCM.

OBJECTIVES

Lyles School of Civil Engineering

Previous Research

- The use of Biomass Ash increases porosity, which decreases density and lowers mechanical strength.^[7]
- Lower water/binder ratio are the most affected by the Biomass Ash due to the high-water absorption which reduces the Workability and decrease the Mechanical Behavior. ^[7]
- Replacement Level of 25% using Biomass Fly Ash has similar compressive strength to Coal

Fly Ash from 7 to 365 days, and to OPC concrete from 28 to 365 days. [8]

Unknowns

Objective

Understanding the role of high-temperature curing on the sugarcane bagasse ash (SCBA) effect in mortar's strength

Materials

Mixture Proportioning

18 x Mortar Cubes \longrightarrow <u>6 Cubes per mixture design</u>

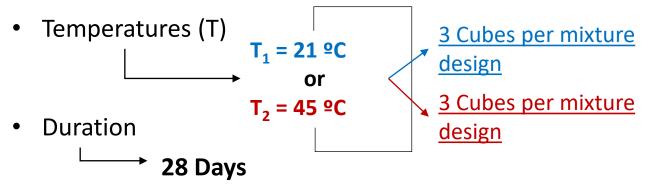
2 C

5 cm

2. Fine Aggregate (FA)

- **3a.** Ordinary Portland Cement Type I (OPC-I)
- **3b.** Sugar Cane Bagasse Ash (SCBA)

*** Grounded & Sieved to 45 μm



Binders

	SCBA [%]	ID	Mass [kg]				
			Effective Water	Oven-Dry FA	OPC-I	SCBA	
	0%	REF	486	243	1459	0	
	10%	SCBA-10	438	232	1459	26	
	20%	SCBA-20	389	221	1459	53	

Mixture Design per 1 m³ (w/b: 0.50)

Curing Conditions:

• Relative Humidity (RH)

RH > 95 %

Methods

Testing Methods

1. Particle Size Analysis (PSA)

PSA 1090 Series

3. Compressive Strength^[ASTM C349]

MTS Universal Testing Machine

2. X-Ray Fluorescence (XRF)

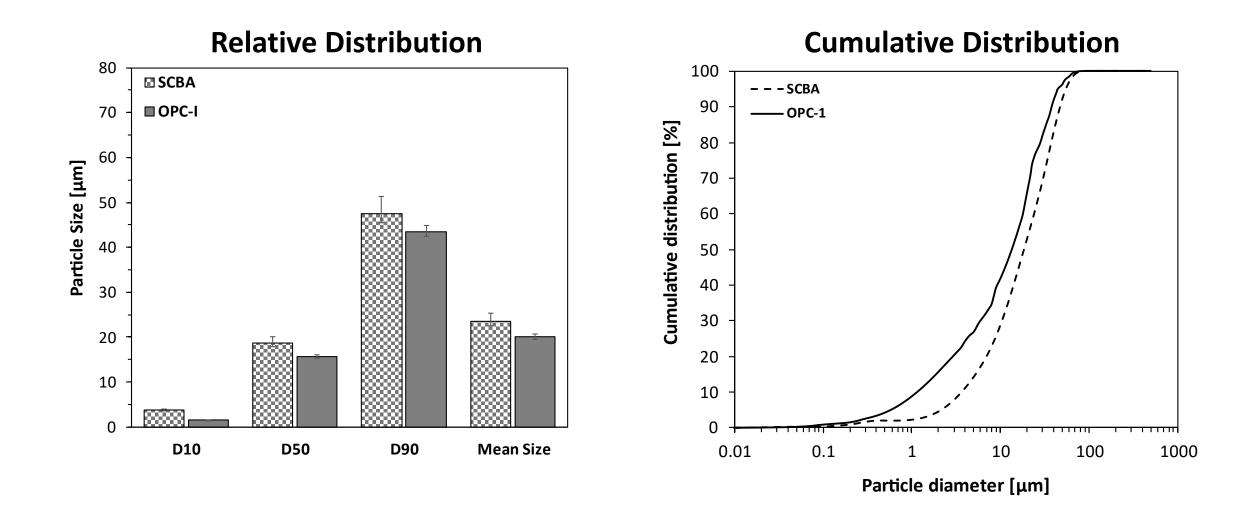
Lab X500 XRF Analyzer

4. X-Ray Diffraction (XRD)

Siemens D500 diffractometer

4. Thermogravimetric Analysis (TGA) 5. Loss of Ignition (LOI) ^[ASTM C311]

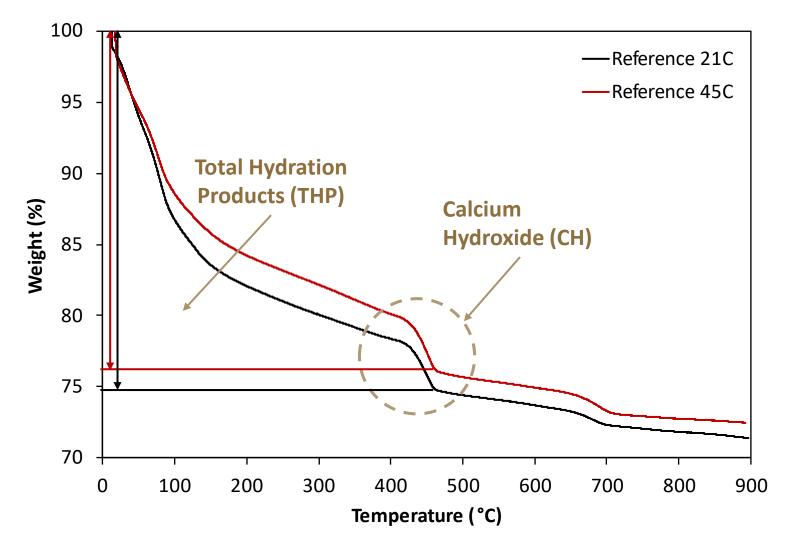
2050 Thermogravimetric Analyzer



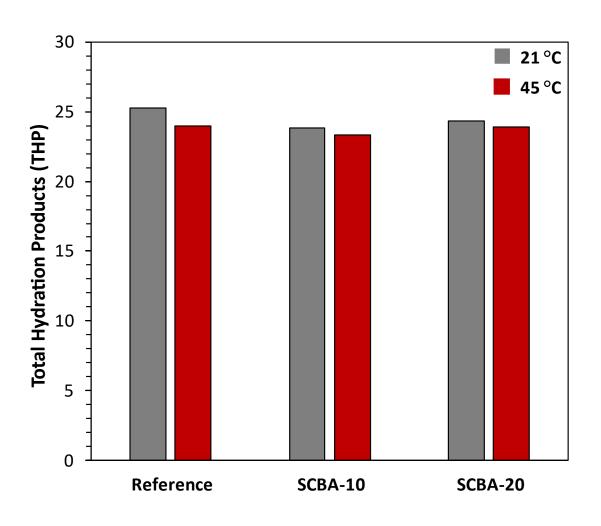
RESULTS & DISCUSSION

PSA - Particle Size Distribution

XRF – Chemical Composition

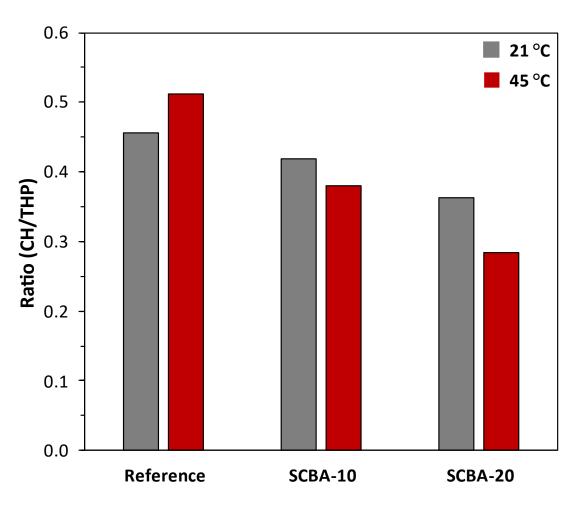

** ASTM C618				
Compound [%]	SCBA	Class N	Class F	Class C
CaO	10.0	 ✓ 	✓ < 18.0	X > 18.0
SO ₃	0.9	< 4.0	✓ < 5.0	< 5.0
$SiO_2 + Al_2O_3 + Fe_2O_3$	77.4	> 70.0	> 50.0	> 50.0
Loss of Ignition (LOI)	13.8 – 16.6	X < 10.0	× < 12.0 ^{**}	★ < 6.0

** Acceptable if physical requirements met... Strength Activity Index (SAI)


Thermogravimetric Analysis (TGA)

** Kim-Olek Method [9]

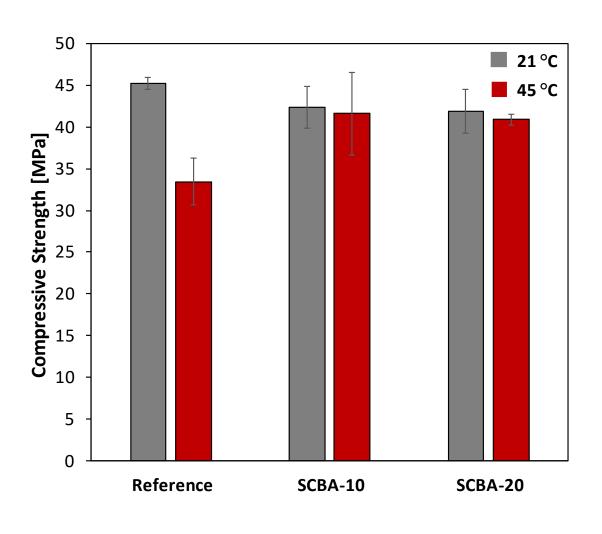
Total Hydration Products (THP)



- Regardless of SCBA replacement amount, the *THP* is lower when cured at 45 °C versus at 21 °C.
- However, higher SCBA replacements mitigated the loss of *THP* when cured at 45 °C in comparison to 21 °C.

	THP [g/100 g]		Δ
	21°C	45°C	[%]
Reference	25.31	23.98	-5.25
10% SCBA	23.84	23.37	-1.97
20% SCBA	24.35	23.92	-1.77

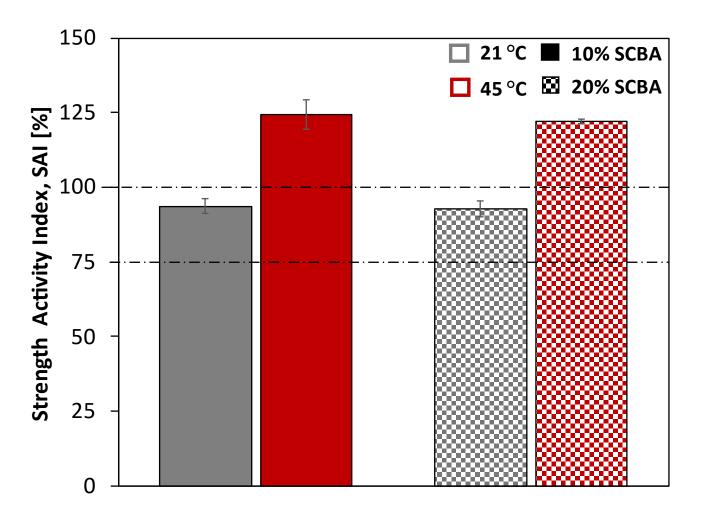
Calcium Hydroxide (CH)



- Lower amounts of SCBA results in a greater *CH-to-THP*, regardless of curing temperature.
- Using SCBA as a replacement, *CH-to-THP* is lower when cured at 45 °C versus at 21 °C.
- When SCBA is not used, the *CH-to-THP* is greater when cured at 21 °C versus at 45 °C.

	CH-to-THP		Δ
	21°C	45°C	[%]
Reference	0.46	0.51	12.37
10% SCBA	0.42	0.38	-9.27
20% SCBA	0.36	0.28	-21.99

Compressive Strength



- Increasing the amount of SCBA results in a lower compressive strength when cured at 21 °C.
- The use of SCBA results in a greater compressive strength when cured at 45 °C.
- The use of SCBA mitigates the loss in compressive strength when cured at 45 °C versus at 21 °C.

	Compressive Strength [MPa]		Δ
	21°C	45°C	[%]
Reference	45.20	33.44	-26.02
10% SCBA	42.37	41.62	-1.77
20% SCBA	41.88	40.88	-2.39

Strength Activity Index (SAI) ** ASTM C311

- The **SAI** minimum of 75% is achieved for both SCBA replacements 10% and 20%; regardless of curing temperature.
- However, for each SCBA replacements 10% and 20%; SAI was much higher when cured at 45 °C versus at 21 °C.
- At both 21 °C and 45 °C; the SAI is slightly higher for SCBA replacement of 10% versus at 20%.

CONCLUSION

Future Work

Conclusions

- When curing at high temperatures (45 °C), the use of SCBA **increases compressive strength** compared to reference mixtures at the same curing temperature.
- SCBA mitigates the decrease in compressive strength in the experienced cross-over effect.
- At high temperatures, the use of SCBA produced a higher decrease of the **Calcium Hydroxide (CH)** -**total hydration products (THP) ratio**, indicating a greater pozzolanic activity than at reference temperature.
- At high temperatures (45 °C), SCBA significantly increases the strength activity index (SAI).

FUTURE WORK

Future Work

- Investigate the influence of SCBAs particle size on its performance as an SCM.
- Examine the X-ray diffraction results of SCBA.
- Investigate the influence of w/c ratio on SCBAs performance as an SCM.
- Evaluate the performance of SCBA as an SCM in concrete.
- Perform a life-cycle analysis (LCA) of SCBA as an SCM in concrete.

References

- 1. Lehne Email Johanna , J. (2020, December 14). *Making concrete change: Innovation in low-carbon cement and concrete*. Chatham House International Affairs Think Tank.
- 2. Zając, G., Szyszlak-Bargłowicz, J., Gołębiowski, W., & Szczepanik, M. (2018). Chemical characteristics of biomass Ashes. *Energies*, *11*(11), 2885.
- 3. Barišić, I., Netinger Grubeša, I., Dokšanović, T., & Marković, B. (2019). Feasibility of agricultural biomass fly ash usage for soil stabilisation of Road Works. *Materials*, *12*(9), 1375.
- 4. Fusade, L., Viles, H., Wood, C., & Burns, C. (2019). The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. *Construction and Building Materials*, *212*, 500–513.
- 5. Akbar, A., Farooq, F., Shafique, M., Aslam, F., Alyousef, R., & Alabduljabbar, H. (2021). Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers. *Journal of Building Engineering*, *33*, 101492.
- 6. Fly Ash Facts for Highway Engineers. U.S. Department of Transportation/Federal Highway Administration. (n.d.).
- 7. Cabrera, M., Díaz-López, J. L., Agrela, F., & Rosales, J. (2020). Eco-efficient cement-based materials using biomass bottom ash: A review. *Applied Sciences*, *10*(22), 8026.
- 8. Wang, S., & Baxter, L. (2007). Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability. *Fuel Processing Technology*, *88*(11-12), 1165–1170.
- 9. Kim, T., & Olek, J. (2012). Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars. Transportation Research Record, 2290(1), 10-18. <u>https://doi.org/10.3141/2290-02</u>

Thank You!

Husam H. Elgaali, Master's Student

Lyles School of Civil Engineering

Purdue University

28 3/25/2024