

ACTIVE STRENGTHENING WITH POST-TENSIONED CFRP TENDONES

PRESENTED BY:

ERI VOKSHI, P.E. SIKA CORPORATION, LYNDHURST, NJ

BUILDING TRU

KEY LEARNING OBJECTIVES

01	DETERMINE WHY STRUCTURES NEED TO BE STRENGTHENED
02	BASICS OF THE ACTIVE POST-TENSIONING CFRP SYSTEM AND INSTALLATION PROCESS
03	CASE STUDIES: APPLICATIONS IN THE FIELDS OF BRIDGE REINFORCEMENT, SEISMIC REINFORCEMENT AND APPLICATION OF REINFORCEMENT FOR CIRCULAR STRUCTURES

DETERMINE WHY STRUCTURES NEED TO BE STRENGTHENED

WHY DO STRUCTURES NEED STRENGTHENING?

- Insufficient reinforcement
- Corrosion damage
- Change in use
- Structural damage
- Seismic upgrade

HOW ARE STRUCTURES STRENGTHENED

EXTERNALLY BONDED FRP OR STEEL

Traditionally done with steel, most bonded strengthening is nowdays done with FRP

SECTION ENLARGEMENT

Used frequently, this method is intrusive to the structure, adds a lot of weight, and takes longer to implement

EXTERNAL POST-TENSIONING

For cases where highcapacity contribution is required, external PT is great solution. Traditionally done with steel, PT strengthening can also be done with FRP

SUPPLEMENTAL SUPPORTS

Supplemental supports are a great solution, though they take headspace and can be tricky to install.

REVIEW OF EXTERNALLY BONDED FRP SYSTEMS

EXTERNAL POST TENSIONING WITH CFRP

Externally FRP systems

Passive Strengthening

External PT FRP system

Active Strengthening

PT SYSTEM ADDRESSES DEFLECTION AND PROVIDES MUCH HIGHER CAPACITY, COMPARED TO EXTERNAL FRP

EXTERNALLY BONDED CFRP VS POST-TENSIONED CFRP

15 CFRP plates

BASICS OF THE ACTIVE POST-TENSIONING SYSTEM WITH EXTERNAL CFRP TENDONS

System

Bridge strengthening

Strengthening of industrial and high-rise buildings

Earthquake strengthening & storm hardening

Reinforcement of silos and water tank (round shape)

System

Anchor Types

Standard anchor (Shear pin)

<u>Standard anchors:</u> Geometry: t = approx. 8" Concrete: f_{cd} = approx. 3,000 psi

Anchor Types

• Standard anchor through ceiling or wall

Anchor Types

1

Individual anchor types (designed project specific)

Layout / Elevation

Force transmission via two shear pins (modification of standard anchor)

Access other side not necessary (anchoring in foundation)

Application (e.g. Typ III) – 1. step preparation

Define location

Drilling

Chipping

For standard anchors: chipping- and assembling scheme from StressHead

Installation & injection

2. Step Installation

3. Step Installation and tensioning

3. Step Installation and tensioning movable anchor

PROTECTION (OPTIONAL)

Protection against fire

PROTECTION (OPTIONAL)

Protection of plates against mechanical impact

CASE STUDIES

Strengthening of Industrial and High-rise buildings

Industrial and high-rise buildings:

- 1. Slab and beam strengthening
- 2. Earthquake strengthening
- 3. Strengthening due to changes

Ideal application criteria:

- High strengthening degree
- Serviceability problems
- Strengthening of prestressed structures
- Cracked concrete

LUCERNE (CH) – EXTEND SPAN OF BEAM

Paper plant Perlen, new columns

LUCERNE (CH) – EXTEND SPAN OF BEAM

Paper plant Perlen, new columns

LUCERNE (CH) – EXTEND SPAN OF BEAM

New situation with displaced columnsnew columns

Vienna (AT) – Serviceability problem

Casino – Romoval of existing pillars

Earthquake Strengthening / Storm hardening

Strengthening of masonry walls

Additional vertical force to result a greater lateral strength

Earthquake Strengthening

• Earthquake strengthening of a shopping mall

Davos (CH) – High Mountain Clinic

Earthquake strengthening

Davos (CH) – High Mountain Clinic

Earthquake strengthening – 160 systems

Davos (CH) – High Mountain Clinic

• Earthquake strengthening – 160 systems

- horizontal and vertical strengthening with different lengths
- Over several floors
- Embedded in the wall to be invisible

Bern (CH) – Precast concrete elements

Strengthening of Bridges

Strengthening of bridges:

- 1. Shear
- 2. Widening of the super structure
- 3. Wind / noise barrier walls
- 4. Longitudinal and transverse
- 5. Pier heads

Strengthening of Bridges

Damage of the existing structure

Higher loads

Corrosion problems

Ensenada (MX) – Prestressed beams

Strengthening due to heavy haulage (1 bridge / 48 systems)

prestressing cables

Ensenada (MX) – Prestressed beams

Strengthening due to heavy haulage (1 bridge / 48 systems)

High Tatras (SK) – Precast box girders (2 bridges)

Strengthening due to higher loads (3 bridges / 90 systems / 3 weeks)

Precast box girders (2 bridges)

Strengthening due to higher loads (1 bridge / 60 systems / 2.5 weeks)

Israel (IL) / Tel Aviv (IL) – Circular strengthening

• Silo strengthening / water tanks, etc.

Tel Aviv (IL) – Fresh water tank

Circular strengthening

DESIGN PROCESS

Tests

- University of Lucerne (CH)
- Politecnico di Milano, Italy (I)
- StressHead Ltd, Lucerne (CH)

Different anchors, strengthened slab

) Under fatigue (2 Mio cycles)

Long Term Tests at 240 kN / 55 kip (2009 – 2019) -> To extrapolate to 50 years (Creep, relaxation, etc.) -> Result: No loss of tensioning force over the years

Design

• Design based on classic steel span cabels

stresshead@stresshead.ch

Take Away!

Lightweight and Fast

Corrosion protected system

Various kind of anchorages >20a experience

Do not hesitate to contact us for any inquiries!

Eri Vokshi

Technical Sales Manager -CFRP and Corrosion Products Sika US vokshi.eri@us.sika.com

Connect with us on Linked in.

Price Estimation: 3-span bridge, increase load capacity by +15%

Totally 48 CarboStress systems each 100 ft to increase the load capacity by +15%